IAP Seminar: Aktuelle Probleme der Angewandten Physik

Techniques for Slow Extraction at the Marburg Ion-Beam Therapy Synchrotron

Claude Krantz

Marburger Ionenstrahl-Therapiezentrum

30 November 2018

MIT: The Marburg Ion-Beam Therapy Centre

C. Krantz Techniques for Slow Extraction | IAP-Seminar | Frankurt, 30 Nov. 2018

Radiation therapy with ion beams photon beams

3

Radiation therapy with ion beams

Primary ion deposits energy (mainly) by multiple ionisation.

Stopping force: Bethe formula

 $\rightarrow dE/dx \sim E^{-1}$

C. Krantz Techniques for Slow Extraction | IAP-Seminar | Frankurt, 30 Nov. 2018

Range sharply defined by starting energy ("Bragg peak").

Radiation therapy with ion beams

"Bragg" stopping behaviour can be used to spare healthy tissue during irradation.

High-energy X-rays:

Depth dose deposition defined by attenuation and surface escape.

Ion beam:

Range sharply defined by starting energy ("Bragg peak").

Radiation therapy with ion beams

Bethe formula (II): $\frac{\mathrm{d}E}{\mathrm{d}x} = -\frac{Z^2 e^4 n_e}{4\pi\varepsilon_0 m v^2} \cdot \frac{1}{2} \ln\left(\frac{2mv^2}{I}\right)$

 $\rightarrow dE/dx \sim Z^2$

Stopping force rises strongly with projectile nuclear charge!

Heavier ions (¹²C⁶⁺) are characterised by higher *biological effectiveness* compared to protons (and photons).

Dose delivery techniques

The techniques used for dose delivery define the required properties of the ion beam.

What kind of accelerator do we need for ion beam therapy?

7

Dose delivery techniques

Particle energy:

Remark: Today, <u>cyclotrons</u> (available commercially) provide only p beams for therapy. All ¹²C⁶⁺-enabled facilities use (larger) ion <u>synchrotrons</u>.

Marburger Ionenstrahl-Therapiezentrum

Dose delivery techniques: Lateral distribution

Old method: Collimation + filtering

- 1) Create a *homogeneous field* from the ion beam (wobbling).
- 2) *Collimate* to match the transverse profile of the target.
- 3) *Moderate* parts of the field to match the far-side depth profile.

Advantages: Well-established in conventional (X-ray) radiotherapy.

Requirements on beam quality (profile, pointing, time-structure) are relaxed.

Disadvantage: Regions of *unnecessary dose* at beam-facing side of tumour!

Dose delivery techniques: Lateral distribution

State-of-the-art: Raster scanning

- 1) Use sequence of fine *pencil-beams* of sharply defined range.
- 2) "Paint" each iso-energetic slice of the target using actively-controlled *scanning magnets*.

Advantage: Optimum 3D tumour conformity of dose-distribution.

- But: Requires a *high-quality* ion beam in pulses of ~ few seconds duration:
 - \rightarrow Stable pointing direction
 - \rightarrow Stable spot size
 - → Stable intensity

Dose delivery techniques: Longitudinal distribution

Similar to HIT accelerator and PIMMS-types (CNAO, MedAustron).

Prototype of SPHIC machine in Shanghai (in op. 2014).

Linear accelerator

RFQ (400 keV/u) + IH structure (7 MeV/u)

> then stripping to p and C^{6+}

2 ECR ion sources

(Pantechnik Supernanogan)

 $\begin{array}{l} {H_{3}}^{+} : ~700 \ \mu A \\ {C}^{4+} : ~140 \ \mu A \end{array}$

14

16

Marburger Ionenstrahl-Therapiezentrum

17

Basic principle of slow extraction

1) Choose machine working point next to a *horizontal resonance*.

(Most often a 3rd-order resonance is used.)

Basic principle of slow extraction

1) Choose machine working point next to a *horizontal resonance*.

(Most often a 3rd-order resonance is used.)

2) Slowly "move" the horizontal particle tunes into resonance.

Basic principle of slow extraction

1) Choose machine working point next to a *horizontal resonance*.

(Most often a 3rd-order resonance is used.)

- 2) Slowly "move" the horizontal particle tunes into resonance.
- 3) Particle tunes are *distributed* along Q_h axis (due to e.g. chromaticity or space charge ...).
 - → In a perfect world: Particles could be *destabilised* "one-by-one".

Basic principle of slow extraction

1) Choose machine working point next to a *horizontal resonance*.

(Most often a 3rd-order resonance is used.)

- 2) Slowly "move" the horizontal particle tunes into resonance.
- 3) Particle tunes are *distributed* along Q_h axis (due to e.g. chromaticity or space charge ...).
 - → In a perfect world: Particles could be *destabilised* "one-by-one".
- 4) Catch (most of) the unstable orbits in an extraction septum.

The 3rd-order resonance can be excited by sextupole magnets (available anyway for chromaticity correction)

As the width of the 3rd-order stop band is amplitude-dependent:

Low betatron amplitudes \rightarrow stable.

High amplitudes \rightarrow Sync with 3rd-order perturbation, destabilised.

Fixed points and size of *separatrix* depend on distance tune-resonance.

23

Marburger Ionenstrahl-Therapiezentrum

There are two methods of slowly "feeding" the resonance:

(1) Change betatron tune of the low-amplitude particles. Examples: Slow quadrupole ramp → changes linear focussing.

Slow acceleration (using cavities, induction cores, stochastic noise)

- \rightarrow changes particle momenta.
- → changes particle tunes via chromaticity.

There are two methods for slowly "feeding" the resonance:

(2) Excite horizontal betatron motion of stable particles

Horizontal RF-kicker electrode ~ in sync with horizontal particle tune.

"Transverse RF-Knock-Out" (RF-KO) technique.

Used e.g. at the MIT, HIT, and HIMAC therapy synchrotrons.

The MIT extraction system

Synchrotron:

65 m circumference

0.5 ... 6.6 Tm

6 Sectors: ...-S-F-M-D-M-O-... (2 quad families)

Multiturn injection at 7 MeV/u

Ramp to final *E*: ~ 0.2 ... 0.9 s

The MIT extraction system

27

Marburger Ionenstrahl-Therapiezentrum

Marburger Ionenstrahl-Therapiezentrum

Dynamic Intensity Control

"Dynamic Intensity Control" (DIC) System – nearly identical to the equivalent system at HIT. (cf. C. Schömers, NIM A 795 (2015) 92)

→ Automatically stabilises (average!) extraction rate at given set-point.

Spill quality

Spill contributed by MIT to the 2016 "Slow Extraction Workshop":

 C^{6+} (298 MeV/u), with DIC, 50 µs binning (IC at beam outlet)

RF-KO extraction combined with DIC

→ provides very good "macro structure"

(time scales down to \sim 10 ms),

→ cannot change much about the spill **"micro structure"**

(kHz ... MHz components).

Note:

At the rapy accelerators, the time resolution of IC detectors blurs structures below ~ 100 $\mu s!$

Macro structure

Macro structure

The Marburg system uses DIC-modulation heavily.

Irradiation plans may include jumps in the extraction rate by up 33 x (in both directions!).

Macro structure

The Marburg system uses DIC-modulation heavily.

Irradiation plans may include jumps in the extraction rate by up 33 x (in both directions!).

Ramping-up the extraction rate is relatively easy ...

2 2.2 Time [s]

12^{×10⁷}

9

6

ntensity [parts/s]

More challenging:

Fast (~ 10 ms) ramps from high to low intensity.

Benchmark plan to test ramping-down behaviour of extraction rate.

↓ Actual treatment plan

50

Controller Output (arb.)

2.4

C. Krantz Techniques for Slow Extraction | IAP-Seminar | Frankurt, 30 Nov. 2018

Macro structure: Optimal response to DIC

Good machine setting

Bad machine setting

35

Macro structure: Optimal response to DIC

C. Krantz Techniques for Slow Extraction | IAP-Seminar | Frankurt, 30 Nov. 2018
KO exciter noise is generated by random phase-shift keying (PSK).

KO exciter noise is generated by random phase-shift keying (PSK).

3 parameters define the noise kicker spectrum:

- A: Amplitude
- f_0 : Main sine frequency
- Δf : Random PSK frequency

Measure beam loss rate while sweeping f_0 over the betatron frequency:

RF-KO spectrum becomes visible

→ Highest extraction rate:

 $f_{_{0}} / f_{_{\rm rev}} = Q_{_{\rm h}} [1]$

Intuitively, one might thus choose to align the KO noise spectrum with the machine tune ...

... however, this results in the **"bad**" ramp-down behaviour!

A much better result is obtained if the spectral maximum is shifted towards the 5/3 resonance.

Explanation?

Before RF-KO:

41

Low-emittance ion beam

42

Marburger Ionenstrahl-Therapiezentrum

C. Krantz Techniques for Slow Extraction | IAP-Seminar | Frankurt, 30 Nov. 2018

43

Marburger Ionenstrahl-Therapiezentrum

1.68

RF-KO freq. / Revolution freq. + 1

Extr. resonance

1.66

 $Q_{\rm res} = 1.666...$

1.64

700

10

Machine tune

1.72

20 30 40

1 74

 $O \sim 1.687$

1.7

10

Tracking simulation 2: KO centre freq. = machine tune – "Bad" setting

Beam core is excited preferentially, large unstable halo. 700 700 700 0 ms (0 turns) ■ 75 ms (1.5×10⁵ turns) 25 ms (5×10⁴ turns) Fit (0 turns) 600 600 600 0 turns 0 turns 500 500 500 € 400 **m** 300 (100 - 400 - 100 simulation: (1-Mu 300 H p (100 MeV) 200

100

DIC combined with RF-KO extraction

→ provides very good "macro structure"

(time scales down to \sim 10 ms),

→ cannot change much about the spill "micro structure"

(kHz ... MHz components).

Note:

At the rapy accelerators, the time resolution of IC detectors blurs structures below ~ 100 $\mu s!$

Micro structure

Major source of spill micro structure: Power supply ripple

- → Machine tune ripple
- \rightarrow "Pulsing" of separatrix

Figure 3: Transfer function for focusing quadrupoles (blue), extraction sextupoles (orange) and main bends (green).

Micro structure

The MIT synchrotron uses extraction from bunched beam.

Adopted from previous GSI and HIT experiments:

→ Better > kHz-scale microstructure. [Forck et al., Proc. of EPAC 2000]

Micro structure: Effect of synchrotron motion

Original observation at SIS18:

Bunching during slow extraction smooths the spill on the > kHz time scale.

- a) An ensemble of particles that has been destabilised by a separatrix ripple moves towards the septum coherently.
- b) Sync. oscillation changes the individual particles tune after destabilisation, leading to broadening of the packet.

Forck et al., Proc. of EPAC 2000

Micro structure: Effect of synchrotron motion

Tracking simulation (MIT)

Longitudinal phase of extracted particles relative to bunching rf:

→ Very sharp micro-bunching of extracted beam (invisible in therapy application)

Momentum deviation of extracted particles:

→ We need dQ < 0 to get close to resonance. → Due to chromaticity ($\xi \sim -1$): dp/p > 0 is preferred.

Micro structure: Effect of synchrotron motion

Tracking simulation (MIT)

Longitudinal phase of extracted particles relative to bunching rf:

→ Very sharp micro-bunching of extracted beam (invisible in therapy application)

Measurement at SIS18 (Forck et al.):

Example: Ni^{26+} at 600 MeV/u

55

Work in progress: What can we gain by using more "elaborate" noise spectra?

Work in progress: What can we gain by using more "elaborate" noise spectra?

Dual-function RF-KO spectrum at HIMAC (NIRS, J):

A. Noda, NIM A 492 (2002) pp. 253

How to get rid of the separatrix ripple?

- 1) Get better power supplies.
 - Expensive!
 - People have tried ...

2) Active tune correction:

Feed-back measured spill signal to a fast correction magnet.

("noise cancellation")

Compensation system using an Air Core Quadrupole (ACQ) magnet is used in production at the CNAO hadron therapy centre (Italy).

fondazionecnao.it

An air core quad for MIT (and HIT) ...

Can induce noticeable tune modulations (~ 10^{-3}) up to 10 kHz even at highest rigidities.

$$\delta Q_{x,y} \approx \frac{1}{4\pi} \frac{\beta_{x,y}}{f}$$

First tests (work in progress!)

Data: Ionisation chamber in extraction beam line.

First tests (work in progress!)

Data: Ionisation chamber in extraction beam line.

First tests (work in progress!)

Data: Ionisation chamber in extraction beam line.

67

Marburg (MIT): ¹²C⁶⁺ (167 MeV/u)

Marburg (MIT): ¹²C⁶⁺ (167 MeV/u)

Heidelberg (HIT): p (64 MeV)

Marburger Ionenstrahl-Therapiezentrum

69

Tune ripple compensation by air core quadrupole?

First results look promising.

System needs to be automated:

- → Self-learing correction function?
- → Direct inverse feedback (CNAO)?

If successful: Needs to be *certified for clinical application*!

Work in progress

. . .

Slow extraction is a key technology at ion synchrotrons for radiation therapy.

Transverse **RF-KO excitation**, combined with **Dynamic Intensity Control** provides excellent spill macro-structure.

Careful adaptation of the **RF-KO spectrum** to the machine tune and extraction resonance improves **macro- and micro-**properties of the spill.

First experiments towards **ripple cancellation** using a fast **air-core quadrupole** magnet have been conducted at the MIT and HIT synchrotrons.

71

U. Scheeler, T. Blumenstein, C. K., A. Weber, M. Witt, Th. Haberer Heidelberger Ionenstrahl-Therapiezentrum

R. Cee, F. Faber, E. Feldmeier,M. Galonska, S. Scheloske,C. Schömers, A. Peters,Th. Haberer

Thank You for Your Attention.

