Slow Extraction at the Marburg Ion-Beam Therapy Synchrotron

Claude Krantz

Marburger Ionenstrahl-Therapiezentrum

GSI Accelerator Seminar

25 April 2019

Overview

1) The Marburg Ion-Beam Therapy Centre (MIT)

2) RF-KO slow extraction at MIT

3) Tune ripple compensation (ongoing ...)

The Marburg Ion-Beam Therapy Centre

move36-marburg.de

hammeskrause.de

The Marburg Ion-Beam Therapy Centre

Slow Extraction at MIT | GSI Accelerator Seminar | Darmstadt, 25 Apr. 2019

Radiation therapy with ion beams

High-energy X-rays:

Depth dose deposition defined by attenuation and surface escape.

Ion beam: Range defined by starting energy ("Bragg peak"). $\frac{dE}{dx} = -\frac{Z^2 e^4 n_e}{4\pi\varepsilon_0 m v^2} \cdot \frac{1}{2} \ln\left(\frac{2mv^2}{I}\right)$ C. Krantz Slow Extraction at MIT | GSI Accelerator Seminar | Darmstadt, 25 Apr. 2019 5

Radiation therapy with ion beams

Bethe formula :

$$\frac{\mathrm{d}E}{\mathrm{d}x} = -\frac{Z^2 e^4 n_e}{4\pi\varepsilon_0 m v^2} \cdot \frac{1}{2} \ln\left(\frac{2mv^2}{I}\right)$$

 $\rightarrow dE/dx \sim Z^2$

Stopping force rises strongly with projectile nuclear charge!

Heavier ions (¹²C⁶⁺) have higher "biological effectiveness".

Radiation therapy with ion beams

Particle energy:

Dose delivery: Longitudinal distribution

Match depth-profile of target by *stacking* of several beams of different energies.

Remark:

Requires a dense spectrum of energies from the accelerator.

Dose delivery: Lateral distribution

State-of-the-art: Raster scanning

- 1) Sequence of *pencil-beams* of defined range.
- 2) "Paint" each iso-energetic slice of the target using *scanning magnets*.

Optimum 3D tumour conformity of dose-distribution.

Linear accelerator

RFQ (400 keV/u) + IH structure (7 MeV/u)

> then stripping to p and C^{6+}

2 ECR ion sources

(Supernanogan)

H₃⁺: ~700 μA C⁴⁺ : ~140 μA

13

Slow Extraction

Slow Extraction

Slow extraction

Synchrotron:

65 m circumference

0.5 ... 6.6 Tm

6 Sectors: ...-S-F-M-D-M-O-... (2 quad families)

Tune at flattop: $Q_{\rm h} \sim 1.69$

→ Slow extraction via 2/3 (sextupole) resonance

Slow extraction

(Transverse) RF-Knock-Out method:

Excite horizontal betatron motion

Horizontal RF-kicker electrode ~ in sync with horizontal particle tune.

Used e.g. at the MIT, HIT, and HIMAC therapy synchrotrons.

Slow extraction

RF-KO Spectrum (I)

RF-KO spectrum is generated by random phase-shift keying (PSK).

Spill quality

Spill contributed by MIT to the 2016 "Slow Extraction Workshop":

C⁶⁺ (298 MeV/u), with DIC, 50 μ s binning.

Spill quality: "Micro"- and "Macro"-structure

Macro structure with DIC

Macro structure with DIC

24

↓ Actual treatment plan

"Bad" machine setting

"Good" machine setting

Only difference: RF-KO exciter spectrum

KO-RF spectrum aligned with **machine tune** (highest max. extr. rate) ...

27

KO-RF spectrum shifted towards **sext. resonance** ...

Explanation?

Before RF-KO:

(Relatively) low-emittance beam

→ RF-KO excites **low amplitudes** preferentially.

1

Extr. resonance

1.66

 $Q_{\rm res} = 1.666..$

1.64

Intensity (arb.)

10

0.1

1.74

40

1.74

Machine tune

1.72

 $O \sim 1.687$

1.7

1.68

Tracking simulation 2: RF-KO @ extr. res. - "Good" setting

Particles in halo are rapidly extracted, beam core "keeps shape".

700

600

500

€ 400 **m** 300

200

RK-KO @ machine tune RF-KO @ extr. resonance Strong hor. emittance growth (simulation). Weak hor. emittance growth (simulation). 100 100 Intensity (arb.) Intensity (arb.) Machine tune Machine tune Extr. resonance Extr. resonance 10 10 $Q \sim 1.687$ f_0 $Q_{\rm res} = 1.666...$.to $O \sim 1.687$ $Q_{\rm res} = 1.666.$ 1 1 0.1 1.64 1.66 1.68 1.7 1.72 1.741.64 1.66 1.68 1.7 1.72 1.74 RF-KO freq. / Revolution freq. + 1 RF-KO freq. / Revolution freq. + 1 Krantz, Proc. of IPAC 2018, pp. 1084 100 100horizontal horizontal Simulation: 80 vertical p, 100 MeV 80 vertical π ε95% (mm mrad) $\pi \epsilon_{95\%}$ (mm mrad) Ī 60 60 Ŧ Simulation: 40 40 p, 100 MeV 重 ₫ Ŧ 20 20 0 0 0.4 0.1 0.2 0.3 0.5 0.5 0 0.1 0.2 0.3 0.4 0 Time (s) Time (s)

"Micro" structure

Main suspect: Power supply ripple

- \rightarrow Hor. tune ripple
- \rightarrow "Pulsing" of separatrix

Micro structure

Extraction from bunched beam.

(Adopted from GSI and HIT)

→ Better > kHz-scale microstructure.

e.g. Sorge et al., Proc. IPAC 2018

Note: One can probably improve further using more elaborate RF-KO spectra!

Random phase-shift spectrum (e.g. MIT, HIT, GSI)

"Dual-function" RF-KO spectrum at HIMAC (NIRS):

See also: F. Faber (PhD, TU DA/HIT), in prep.

Micro structure: Ripple compensation?

How to get rid of the separatrix ripple?

1) Get better power supplies.

Expensive! People have tried ...

2) Active tune correction:

Use measured spill signal to stabilise the tune via **fast corrections of the quadrupole fields**.

("noise cancellation")

Ripple compensation @ CNAO

Compensation system using an Air Core Quadrupole (ACQ) magnet is used in production at the CNAO hadron therapy centre (Italy).

fondazionecnao.it

Additional problem a MIT (and HIT)

Seen earlier:

DIC may vary the spill rate on the ~ 10 ms scale!

→ Possible ripple cancellation systems must be compatible with this wanted (but random) spill modulation!

A simple negative feedback loop could be prone to in-fighting with the DIC

Ripple compensation: Power-grid harmonics

Ripple compensation: Power-grid harmonics

Pitfall: Power-grid frequency is actually not very stable ...

→ Need phase-locked function generator.

Freq. (Hz):		Rel. Ampl.:		Phase (rad):				
50	*	0.1200	+	-0.60000	+		: F0	
100	*	0.9500	*	0.17000	*	\square	: F1	
150	*	0.1700	*	-0.23000	+		: F2	
200	+	1.0000	*	0.00000	+		: F3	
250	*	0.9600	+	-1,00000	*	☑	: F4	
300	*	1.0000	*	-0.08000	+	☑	; F5	
350	÷	0.2300	+	1.50000	÷	\square	: F6	
400	*	0.2500	*	1.30000	*	$\overline{}$: F7	
450	*	1.0000	*	0.00000	*		: F8	
500	*	1.0000	*	0.00000	*		: F9	
550	*	1.0000	*	0.00000	+		: F10	
600	+	1.0000	*	0.00000	+		: F11	
650	*	1.0000	*	0.00000	*		: F12	
700	*	1.0000	*	0.00000	*		; F13	
750	÷	1.0000	*	0.00000	÷		: F14	
Master Gair	1:	Inc. (arb.):		Phase (rad):		_	Inc. (ra	d):
-0.3550	÷	0.0100	÷	-2.9632	÷	0.0	0100	÷
Output		Enable PLL				ва	ase fun	tion:
Bode Corr.		PLL Plotter			0	Sawtoo	th	
					 Sine wave 			
						9	Suic we	

45

18.9512, -26167.2

t (ms)

A simple Air-Core Quadrupole magnet

A simple Air-Core Quadrupole magnet

Can induce spill modulations up to 10 kHz at all rigidities.

Off-the shelft HiFi amplifier

C. Krantz Slow Extraction at MIT | GSI Accelerator Seminar | Darmstadt, 25 Apr. 2019 49

0

Beam response is a single line at operating frequency of ACQ mixing with existing power-grid spectrum.

First tests (work in progress!)

Data: Ionisation chamber in extraction beam line.

First tests (work in progress!)

Data: Ionisation chamber in extraction beam line.

First tests (work in progress!)

Data: Ionisation chamber in extraction beam line.

Up to now:

Correction function is "hand-made".

Operator programs signal generator while observing the spill FFT.

.

Outlook: Do we actually need the ACQ?

Outlook: Do we actually need the ACQ?

First tests: Seems to work equally well @ frequencies < 1 kHz ...

Slow extraction is a key technology at ion synchrotrons for radiation therapy.

Transverse **RF-KO excitation**, combined with **Dynamic Intensity Control** provides excellent spill macro-structure.

Adjustment of the **RF-KO spectrum** with resp. to tune and extraction resonance improves **macro- and micro-**properties of the spill.

First experiments towards **ripple cancellation** using an **ACQ** are promising.

U. Scheeler, T. Blumenstein, <u>C. K.</u>, M. Rothenburger, A. Weber, M. Witt, Th. Haberer Heidelberger lonenstrahl-Therapiezentrum

R. Cee, F. Faber, E. Feldmeier,M. Galonska, S. Scheloske,C. Schömers, A. Peters,Th. Haberer

Thank You for Your Attention.

