

Dispersive coupling in low-energy electron cooling at CRYRING@ESR

Claude Krantz

DPG Spring Meeting AKBP, Mainz/Online

29 March 2022

CRYRING@ESR

Complements ESR by a dedicated cooler storage ring for low energy ($\leq 10 \text{ MeV/u}$) highly-charged ions.

Commissioning (from 2017) almost complete.

Serving FAIR experiments since 2020.

CRYRING@ESR

Electron cooling

Merged, single-pass electron beam with $\langle \boldsymbol{v}_{e} \rangle = \langle \boldsymbol{v}_{i} \rangle$.

Any relative ion velocity $\boldsymbol{u} = (u_x, u_y, u_z)$ is damped by a "stopping" force *F*:

$$\begin{array}{l} F_{x,y} \approx - a_{x,y} \cdot u_{x,y} & (\text{trans.}) \\ F_{z} \approx - a_{z} \cdot u_{z} & (\text{long.}) \end{array}$$

With

$$a_{x,y} < a_z$$

and

$$a_{_{x,y,z}} \sim q_{_{\mathrm{i}}}^2 \cdot n_{_{\mathrm{e}}}$$
 .

($q = \text{ion charge}, n_e = \text{electron density}$)

From
$$\langle \mathbf{v}_{e} \rangle = \langle \mathbf{v}_{i} \rangle$$
 follows that $E_{kin,e} \approx \frac{m_{e}}{m_{i}} \cdot E_{kin}$

Highly charged ions: cooler voltages $U_{acc} \ge \text{few kV}$ e.g. U⁹¹⁺: $E_{kin,i} \approx 10 \text{ MeV/u} \rightarrow (E_{kin,e} \approx 5500 \text{ eV})$

 pretty standard, much experience (also from other cooler rings).

Singly-charged ions: very low cooler voltage

e.g. ²⁵Mg⁺: $E_{kin,i} \approx 155 \text{ keV/u} \rightarrow (E_{kin,e} \approx 85 \text{ eV})$

5

→ Ultra-low-energy electron cooling is a young field!

TSR (MPIK, 2007 2012):	130 31 eV
ELENA (CERN, 2018):	355 54 eV
CSR (MPIK, 2017):	50 5 eV

Electron cooling: Low energies

Space-charge of beam partly screens electrons from acceleration voltage:

 \rightarrow Electrons are <u>faster</u> near edge of beam.

Bosser, NIM A 441 (2000), 60 Beutelspacher, NIM A 512 (2003), 459

... relatively, space-charge effects tend to become more important for low-energy beams.

Reason: Need to approach "space-charge limit" to keep acceptable n_e (*Child-Langmuir-Law*).

²⁴Mg⁺ and ²⁵Mg⁺ for in-ring laser spectroscopy.

Maximum Bg: 168 keV/u and 155 keV/u.

Electron cooler: $U_{\rm acc} \approx 102$ V and 96 V.

Transverse cooling (neutral imaging):

E. B. Menz in prep. / C. Krantz, Proc. IPAC 2021

Longitudinal bunch cooling (pickup):

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Claude Krantz - DPG 2022 Mainz / AKBP

29/03/2022

Fluorescence signal from laser-irradiated ions.

Laser frequency tuned to synchronous particle velocity.

→ Very sensitive probe of bunch structure vs. storage time!

Dispersive heating by e-cooler

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Dispersive heating by e-cooler

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Claude Krantz - DPG 2022 Mainz / AKBP

Horizontal acceptance for e-cooling

GSI Helmholtzzentrum für Schwerionenforschung GmbH Claude Kra

Claude Krantz – DPG 2022 Mainz / AKBP

Horizontal acceptance for e-cooling

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Claude Krantz – DPG 2022 Mainz / AKBP

16

- Singly charged ions at CRYRING@ESR require low-energy electron cooling.
- High e-beam space charge and dispersive ion optics limit horizontal acceptance for electron cooling.
- Ultimately, **control of dispersion** at the cooler may become necessary.

Thank you!

Z. Andelkovic¹, C. Dimopoulou¹, F. Herfurth¹, R. Heß¹, C. K.¹, M. Lestinsky¹, E. B. Menz¹, K. Mohr^{1,2}, W. Nörtershäuser², A. Reiter¹, J. Roßbach¹, R. Sánchez^{1,2}, G. Vorobjev¹

> ¹ GSI Helmholtzzentrum für Schwerionenforschung ² Institut für Kernphysik, TU Darmstadt