Spin-1/2-System

Claude Krantz

Übung Physik IV 10.05.2012

Quantenmechanischer Drehimpuls \vec{J} :

$$[J_i, J_j] = i \hbar \epsilon_{ijk} J_k \tag{1}$$

Dies ist die einzige Anforderung!

Alle Vektoroperatoren, die (1) erfüllen sind q.m. Drehimpulse.

Aus (1) folgt

$$[J_{i},J^{2}]=0$$

Eigenwertgleichungen

$$J^{2}|\psi_{jm}\rangle = \hbar^{2} j (j+1)|\psi_{jm}\rangle$$
$$J_{i}|\psi_{jm}\rangle = \hbar m|\psi_{jm}\rangle$$

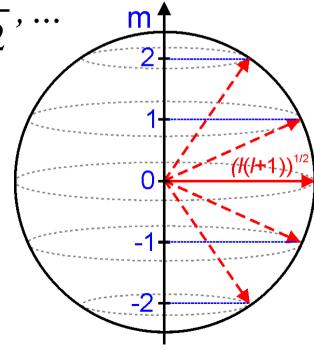
mit

$$j = 0, 1, 2, \dots$$

$$j=0,1,2,...$$
 oder $j=\frac{1}{2},\frac{3}{2},\frac{5}{2},...$

und

$$m = -j, -j+1, ..., j-1, j$$

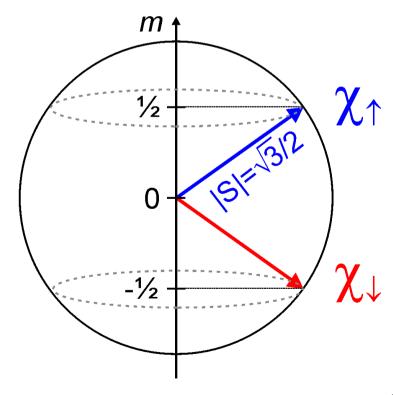


Elektronenspin \vec{S} ...

... ist ein q.m. Drehimpuls.

$$j=s=\frac{1}{2}$$

$$m = m_s = \pm \frac{1}{2}$$



Elektronenspin \vec{S} ...

... ist ein q.m. Drehimpuls.

Mit
$$j=s=\frac{1}{2}$$
 und $m=m_s=\pm\frac{1}{2}$

E.w.-Gleichungen:
$$S^{2}|\psi\rangle = \hbar^{2}s(s+1)|\psi\rangle = \frac{3\hbar^{2}}{4}|\psi\rangle$$
$$S_{i}|\psi\rangle = \hbar m_{s}|\psi\rangle = \pm \frac{\hbar}{2}|\psi\rangle$$

Elektronenspin \vec{S} ...

... ist ein q.m. Drehimpuls.

$$j = s = \frac{1}{2}$$

und

$$m = m_s = \pm \frac{1}{2}$$

$$S^{2}|\psi\rangle = \hbar^{2} s (s+1)|\psi\rangle = \frac{3 \hbar^{2}}{4} |\psi\rangle$$

$$S_i|\psi\rangle = \hbar m_s|\psi\rangle = \pm \frac{\hbar}{2}|\psi\rangle$$

Zwei-Niveau-System:

Alle Zustände leben in 2-dimensionalem Hilbertraum.

Sei $\{|1\rangle, |2\rangle\}$ eine beliebige Basis.

Jeder Spin-Zustand kann durch einen Spinor in $\{|1\rangle, |2\rangle\}$ dargestellt werden:

$$|\psi\rangle = a |1\rangle + b |2\rangle = (|1\rangle|2\rangle) \begin{pmatrix} a \\ b \end{pmatrix}$$
$$\Rightarrow |\psi\rangle = \begin{pmatrix} a \\ b \end{pmatrix}$$

Matrixdarstellung von S_i :

$$\langle S_{i} \rangle = \langle \psi | S_{i} | \psi \rangle = (\overline{a} \langle 1 | + \overline{b} \langle 2 |) S_{i} (a | 1 \rangle + b | 2 \rangle)$$

$$= (\overline{a} \langle 1 | + \overline{b} \langle 2 |) (S_{i} a | 1 \rangle + S_{i} b | 2 \rangle)$$

$$= (\overline{a} \overline{b}) \begin{pmatrix} \langle 1 | S_{i} | 1 \rangle & \langle 1 | S_{i} | 2 \rangle \\ \langle 2 | S_{i} | 1 \rangle & \langle 2 | S_{i} | 2 \rangle \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

Matrixdarstellung von S_i :

$$\langle S_{i} \rangle = \langle \psi | S_{i} | \psi \rangle = (\overline{a} \langle 1 | + \overline{b} \langle 2 |) S_{i} (a | 1 \rangle + b | 2 \rangle)$$

$$= (\overline{a} \langle 1 | + \overline{b} \langle 2 |) (S_{i} a | 1 \rangle + S_{i} b | 2 \rangle)$$

$$= (\overline{a} \overline{b}) \begin{pmatrix} \langle 1 | S_{i} | 1 \rangle & \langle 1 | S_{i} | 2 \rangle \\ \langle 2 | S_{i} | 1 \rangle & \langle 2 | S_{i} | 2 \rangle \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$
Spinor*

Matrixdarstellung von S_i

in der Basis $\{|1\rangle, |2\rangle\}$

"Diagonalisierung":

Wegen
$$[J_i, J_j] = i\hbar \epsilon_{ijk} J_k$$
 (1)

kann man $\{|1\rangle, |2\rangle\}$ so wählen dass sie E.z. zu <u>einer</u> Spin-Komponente S_i sind.

"Traditionell" wählt man S_z als ausgezeichnete

Spinkomponente:

$$S_{z}|\uparrow\rangle = +\frac{\hbar}{2}|\uparrow\rangle \qquad |\uparrow\rangle \equiv \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$S_{z}|\downarrow\rangle = -\frac{\hbar}{2}|\downarrow\rangle \qquad |\downarrow\rangle \equiv \begin{pmatrix} 0\\1 \end{pmatrix}$$

"Diagonalisierung":

Damit wird die Matrixdarstellung von S_z

$$S_{i} = \begin{cases} \langle 1|S_{i}|1 \rangle & \langle 1|S_{i}|2 \rangle \\ \langle 2|S_{i}|1 \rangle & \langle 2|S_{i}|2 \rangle \end{cases}$$

$$S_{z} = \begin{cases} \langle \uparrow |S_{z}| \uparrow \rangle & \langle \uparrow |S_{z}| \downarrow \rangle \\ \langle \downarrow |S_{z}| \uparrow \rangle & \langle \downarrow |S_{z}| \downarrow \rangle \end{cases}$$

$$= \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Heidelberg, 10. Mai 2012 Claude Krantz 11

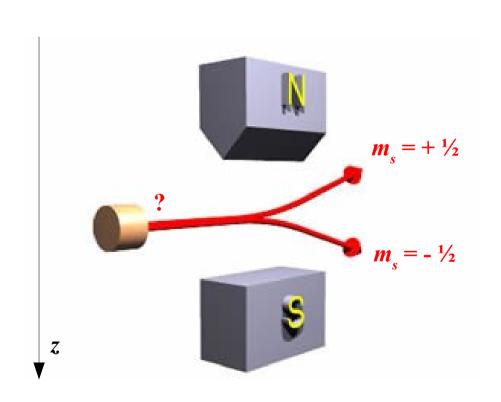
"Diagonalisierung":

Wegen $[J_i, J_j] = i \hbar \epsilon_{ijk} J_k$ sind die übrigen Spinmatrizen in der Basis $\{|\uparrow\rangle, |\downarrow\rangle\}$ (E.z. zu S_z) off-diagonal:

$$S_{x} \equiv \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad S_{y} \equiv \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad S_{z} \equiv \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Stern-Gerlach-Versuch:

Unpolarisierter Atomstrahl (mit $S = \frac{1}{2}$)



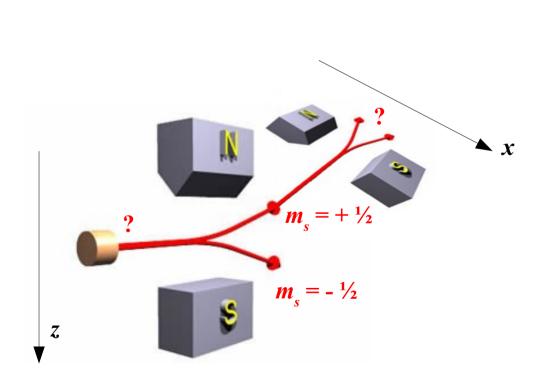
$$|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle + |\downarrow\rangle)$$

Wahrscheinlichkeit für Spin in *z*-Richtung:

$$|\langle \mathbf{\uparrow} | \psi \rangle|^2 = \frac{1}{2}$$

Erweiterter Stern-Gerlach-Versuch:

Selektiere Atomstrahl mit $m_s = +\frac{1}{2}$ bezüglich z-Richtung ($|\uparrow\rangle$). Weiterer St.-G.-Apparat in x-Richtung.



(Blatt 2:) E.z. zu S_x in Basis $\{|\uparrow\rangle, |\downarrow\rangle\}$:

$$|\chi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle \pm |\downarrow\rangle)$$

Wahrscheinlichkeit für Spin in *x*-Richtung:

$$|\langle \chi_+ | \mathbf{\uparrow} \rangle|^2 = \frac{1}{2}$$

Heidelberg, 10. Mai 2012 Claude Krantz 14