#### Accelerators for Ion-Beam Therapy

Claude Krantz (GSI)



Christoph-Schmelzer Summer School

Scheinfeld, 27 July 2023

## Outline

Beam requirements



Cyclotron vs. synchrotron

Overview of some facilities

Recent developments and alternative concepts

Latest synchrotron R&D







### Outline

#### **Beam requirements**



Accelerator systems

Cyclotron vs. synchrotron

Overview of some facilities

Recent developments and alternative concepts

Latest synchrotron R&D





#### Beam requirements: p or <sup>12</sup>C<sup>6+</sup>



De-facto, p <u>and</u> <sup>12</sup>C<sup>6+</sup> have their place in ion beam therapy ...

... and they impose very different requirements on the accelerator system.

#### Beam requirements: Energy

Energy: Defined by required penetration depth.

For 30 cm: **220 MeV** for p **430 MeV/u** for <sup>12</sup>C<sup>6+</sup>



# Requirements from dose distribution techniques



#### Logitudinal distribution (along beam axis):

- 1) **stacking** of a sequence of beams of different energy, or
- 2) use of a single beam of "matching" broad **energy distribution**, or
- 3) a combination of the two.

Accelerator system must provide a wide spectrum of ion energies for each ion species (p,  ${}^{12}C^{6+}$ , ...)

# Requirements from dose distribution techniques

#### Lateral distribution (transverse to beam):

Durante and Paganetti, Rep. Prog. Phys. 79 (2016)



#### Pencil-beam scanning

"Paint" iso-energetic slice of the target volume.

Requires beam size, energy, and intensity to be **stable** over several **seconds**!

# Required beam intensity

Rule of thumb:

$$D[Gy] \approx 0.1602 \times \phi \left[\frac{10^9}{cm^2}\right] \times \frac{S}{\rho} \left[\frac{MeV}{g/cm^2}\right]$$

with

- D applied dose in Gy = J/kg
- $\phi$  particle fluence in billions per cm<sup>2</sup>

 $S/\rho$  density-normalised stopping force  $dE/ds \cdot \rho$  at Bragg peak in MeV cm<sup>2</sup> / g

Typical dose for therapy: ~ 1 Gy per fraction

Typical  $S/\rho$  (for protons): ~ 5 MeV cm<sup>2</sup>/g

 $\rightarrow$  Need ~ 10<sup>9</sup> protons per cm<sup>2</sup> of tumor cross-section ( $\leftarrow$  Simplified 2D picture!)

 $\rightarrow$  An (average) proton rate of few 10<sup>9</sup> s<sup>-1</sup> (0.1 ... 1 nA) looks reasonable.

# Required beam intensity

Rule of thumb:

$$D[Gy] \approx 0.1602 \times \phi \left[\frac{10^9}{cm^2}\right] \times \frac{S}{\rho} \left[\frac{MeV}{g/cm^2}\right]$$

with

- *D* applied dose in Gy = J/kg
- $\phi$  particle fluence in billions per
- *S*/ρ density-normalised stopping

Typical dose for therapy: ~ 1 Gy per fractio

Typical  $S/\rho$  (for protons): ~ 5 MeV cm<sup>2</sup>/g

 $\rightarrow$  Need ~ 10<sup>9</sup> protons per cm<sup>2</sup> of tumor cro

Remarks

- (1) If the beam transport is lossy (e.g. due to energy degraders, collimators, ...) the intensity at the accelerator may need to be much higher.
- (2) Also much lower intensities should be available, e.g. for the fore-most pristine Bragg peak.



 $\rightarrow$  An (average) proton rate of few 10<sup>9</sup> s<sup>-1</sup> (0.1 ... 1 nA) looks reasonable.

# **Required beam intensity**

Rule of thumb:

$$D[Gy] \approx 0.1602 \times \phi \left[\frac{10^9}{cm^2}\right] \times \frac{S}{\rho} \left[\frac{MeV}{g/cm^2}\right]$$

with



#### **Remarks**

- If the beam transport is lossy (e.g. due (1)to energy degraders, collimators, ...) the intensity at the accelerator may need to be much higher.
- Also much lower intensities should be (2)available, e.g. for the fore-most

# Key requirements for a therapy ion beam

Energy: Defined by required penetration depth.

For 30 cm: **220 MeV** for p **430 MeV/u** for <sup>12</sup>C<sup>6+</sup>

Intensity: few ~ 10<sup>9</sup> protons/s

few ~ 10<sup>8 12</sup>C<sup>6+</sup>/s

Time structure (raster scanning):

Quasi DC beam pulses of **1** ... **10** s duration

Stable emittance and energy.

## Outline

Beam requirements



#### **Accelerator systems**

Cyclotron vs. synchrotron

Overview of some facilities

Recent developments and alternative concepts

Latest synchrotron R&D





Use electric charge q = Qe of particles:

Electric potential difference  $\rightarrow$  Acceleration to kinetic energy E = qU





www.mpi-hd.mpg.de



Original realisation: Wideroe drift tube linac (1928)

Encyclopedia Britannica (2007)

cavity

beam

#### **Radiofrequency Linacs**

- (1) Instead of one large proton electrostatic field, use oscillating E fields,
- (2) synchronise particle motion with "accelerating" phase of E-field.

 $\rightarrow$  continuous acceleration.

Alvarez structure of GSI's UNILAC

drift tubes

radio-frequency

power source

Later improved into **resonant** accelerator structures (*Alvarez*-type linacs).  $\rightarrow$  *Higher rf power, higher frequencies*.



# Cyclotrons

Idea: Re-use the same HF acceleration gap over-and-over again.



E. Lawrence's original concept of the cyclotron (1934 patent):

D-shaped RF electrodes ("*Dees*") placed in a disk-like vacuum chamber and embedded in a large (near-homogeneous) static magnetic field.

 $\rightarrow$  Radius of particle trajectory increases at each passage through the gap.

# **Classical cyclotron**

#### E. Laurence (1934):

Radial acceleration:

$$\frac{F_{\perp}}{m} = \omega^2 \rho = \frac{q \, \omega \, \rho \, B}{m}$$

 $\rightarrow$  constant (!) cyclotron-frequency:

$$\omega_c = \frac{q B}{m}$$



Kinetic energy after n turns:

 $E = 2 n q U_{RF}$ 

From  $E = m \omega_c^2 \rho^2 / 2 \rightarrow \text{"cyclotron radius"}$  $\rho(n) = \frac{\sqrt{2Em}}{aB} = \frac{\sqrt{4nqU_{RF}m}}{qB}$  Classical case: machine size ~  $E^{1/2}$ Lawrence's first devices (Berkeley) had 1932:  $\rho = 35 \text{ cm} \rightarrow p (4.8 \text{ MeV})$ 1937:  $\rho = 47 \text{ cm} \rightarrow p (8.0 \text{ MeV})$ 1939:  $\rho = 76 \text{ cm} \rightarrow p (16 \text{ MeV})$ 

# Classical cyclotron: Stability of transverse motion



#### Vertical direction:

In the classical cyclotron, the magnetic field *B* decreases (slowly) with *r*.



"Automatic" focussing in the axial direction.

#### **Relativistic cyclotron**

For therapy, we need 220 MeV p ( $\gamma$  = 1.25) or 430 MeV/u  ${}^{12}C^{6+}$  ( $\gamma$  = 1.46)

→ Relativistic corrections are not negligible!

 $\omega_c = \frac{qB}{m} \rightarrow \omega_{c,rel} = \frac{\omega_c}{\gamma} = \frac{qB}{\gamma m} \rightarrow \text{Breaks synchronicity with RF. Solutions?}$ 

#### **Relativistic cyclotron**

For therapy, we need 220 MeV p ( $\gamma$  = 1.25) or 430 MeV/u  $^{12}C^{6+}$  ( $\gamma$  = 1.46)

→ Relativistic corrections are not negligible!

 $\omega_c = \frac{qB}{m} \rightarrow \omega_{c,rel} = \frac{\omega_c}{\gamma} = \frac{qB}{\gamma m} \rightarrow \text{Breaks synchronicity with RF. Solutions?}$ 

(1) Synchrocyclotron

(2) Isochronous cyclotron

Keep **constant B**, **tune RF** frequency.



CERN Synchrocyclotron: 600 MeV p (1957)

/ikipedia.org

Drawback: Only a short train of particles is in sync with RF ramp.

→ pulsed operation, lower average current. Keep **RF** frequency **constant**, **increase** *B* with *r*.



Most modern cyclotrons are isochronous.

→ cw operation

### **Relativistic cyclotrons**

However, with positive gradient in *B*, there is no axial focussing "for free" anymore ...



Introduce "alternating gradients" (L. Thomas, 1938): Shape magnet faces to have "hills" and "valleys"

> Craddock, Rev. Accel. Sci. Technol. (2008)



 $\rightarrow$  "Strong focussing" at sector edges.



# Cyclotrons for ion-beam therapy

The cyclotron is *the most used* accelerator for medical purposes.

Neutron therapy: *(Lawrence & Livingston*)

 $p + {}^{9}Be \rightarrow {}^{9}B + n$  around 1936 @ 8 MeV $d + {}^{9}Be \rightarrow {}^{10}B + n$  cyclotron in Berkeley)

- Proton-beam therapy: Proposed by R. Wilson in 1946 First applied 1954 in Berkely (J. Lawrence & C. Tobias, at the 184"-cyclotron, Berkeley)
- Radioisotope factories for nuclear medicine.

# Cyclotrons for ion-beam therapy

#### Isochronous cyclotron C230 by IBA

Designed for proton therapy.

Installed at 16 facilities.

Mass: 220 t

E = 230 MeV

I<sub>max</sub> = 300 nA

$$\begin{array}{rl} B &= 2.2 \ \text{T} & \rightarrow \rho \sim 1.1 \ \text{m} \\ & (D_{\text{outer}} \sim 4.5 \ \text{m}) \end{array}$$



# Cyclotrons for ion-beam therapy



COMET superconducting cyclotron

Developed by ACCEL / PSI (later Varian Medical) for proton therapy

Mass: 80 t

E = 250 MeV

*I* = 1 ... 850 nA

$$B_{\text{max}} = 3.8 \text{ T} \rightarrow \rho \sim 0.8 \text{ m}$$
$$(D_{\text{outer}} = 3.1 \text{ m})$$

www.psi.ch

# Cyclotrons for ion-beam therapy: Energy selection

A cyclotron is a fixed energy machine ...



# Cyclotrons for ion-beam therapy: <sup>12</sup>C<sup>6+</sup>?

Cyclotron frequency: 
$$\omega_c = \frac{q B}{\gamma m} \Leftrightarrow \frac{v}{\rho} \gamma m = q B \Leftrightarrow \frac{p}{q} = B \rho$$
  
Protons (220 MeV):  $B\rho = 2.3 \text{ Tm}$   
<sup>12</sup>C<sup>6+</sup> (430 MeV/u):  $B\rho = 6.6 \text{ Tm}$ 

#### "magnetic rigidity":

Relates <u>particle momentum and</u> <u>charge</u> to <u>magnetic field and</u> <u>bending radius</u>.

Arguably the most important quantity in accelerator science!

I.e. to go from protons to carbon ions, one needs to increase either the **magnetic field** or the **size** of the machine by a factor ~3.

Although they are very successful in proton therapy, there is no cyclotron for carbon-ion therapy yet.

# Cyclotrons for ion-beam therapy: <sup>12</sup>C<sup>6+</sup>?

There was a project ("ARCHADE") to install a carbon-treatment facility in Caen (France).

Should have been based on a superconducting cyclotron ("C400") developed by IBA.



In 2014, it was decided to build a proton facility first and the C400 project has been postponed ...





All carbon ion-beam therapy centres in operation use synchrotrons as main acceleration stages.



Advantage:







Today, most machines use a "separate function" layout, with individually specialised magnets.

Dipole  $\rightarrow$  bending







Quadrupole  $\rightarrow$  (de-)focussing







#### Synchrotrons: Stability of transverse motion



#### Synchrotrons: Stability of transverse motion
# Synchrotrons: Stability of transverse motion

#### Not all tunes lead to stable transverse motion!

E.g. for an **integer tune**, particle coordinates repeat identically at every turn.

Bending errors dx' due to dipole imperfections accumulate, amplitudes grow beyond *acceptance*.





Half-integer tune: bending errors cancel every 2nd turn.

# Synchrotrons: Stability of transverse motion



# Synchrotrons: Stability of transverse motion



#### "Slow extraction"

Exploit instability of horizontal betatron motion at resonance conditions:  $n f_{\text{Beta}} \approx m f_{\text{Rev}}$ 



Exploit instability of horizontal betatron motion at resonance conditions:  $n f_{\text{Beta}} \approx m f_{\text{Rev}}$ 

The "art" of slow extraction:

Make sure particles enter resonance "one-by-one".

 $\rightarrow$  if successful: Quasi-DC emitted beam of several s duration ("spill")

#### General approach:

Take advantage of the fact that  $f_{\text{Beta}}$  is not the same for every particle!

E.g. Betatron frequency depends on betatron amplitude if one considers higher field orders!





**Example 1:** Loma Linda University Medical Center (USA)

250-MeV *p*-synchrotron for ion-beam therapy.







Example 1: Loma Linda University Medical Center (USA)

250-MeV *p*-synchrotron for ion-beam therapy.





*Example 2:* GSI experimental <sup>12</sup>C<sup>6+</sup> program

Slow extraction from SIS18 synchrotron via 3rd order (sextupole) resonance.



SIS18, GSI (Darmstadt)









## Cyclotron beam vs. Synchrotron beam





- <u>cw-operation</u>: continuous train of short particle bunches.
- High intensity (high dose rates).
- <u>Ion intensity easily variable</u> (modulation of ion source current).

#### Cons

- <u>Fixed energy</u>: needs degraders (particle loss, radiation safety issues).
- <u>Heavy ions</u> (<sup>12</sup>C<sup>6+</sup>) would require very large magnet and chamber.







- Scalable to arbitrary *Bp*, can deliver <u>heavy ions</u>.
- <u>Variable energy</u>, (almost) no particle losses.

#### Cons

- Control of <u>beam intensity</u> is difficult.
- Pulsed operation, breaks between cycles
- Very high dose rates hard to achieve.
  - $\rightarrow$  see advanced topics chapter!

# Synchrotron ion-beam therapy facilities

Loma Linda, USA





1<sup>st</sup> hospital-based proton therapy centre
(since 1990)
Proton synchrotron designed by Fermilab
> 20000 patients treated

# Synchrotron ion-beam therapy facilities



Chiba, Japan:

HIMAC (Heavy-Ion Medical Accelerator in Chiba, NIRS, 1994)

Two 800 MeV/u synchrotrons, for ions up to  ${}^{40}Ar^{18+}$ , mostly  ${}^{12}C^{6+}$ .

> 10000 patients treated with  ${}^{12}C^{6+}$  (2015)

cern.ch

# Synchrotron ion-beam therapy facilities



First hospital-based p/C centre in Europe.

> 7000 patients (2022)

First isocentric <sup>12</sup>C<sup>6+</sup> gantry.

Today, 3 more facilities in Europe, closely following the HIT design:

> CNAO (Pavia, Italy) MIT (Marburg, Germany) MedAustron (Wiener Neustadt, Austria)

#### Heidelberg, Germany

Heidelberg Ion-Beam Therapy Centre (HIT), from 2009, based on GSI experiments.



# Outline

Beam requirements



#### **Accelerator systems**

Cyclotron vs. Synchrotron

Overview of some facilities

Recent developments and alternative concepts

Latest synchrotron R&D





# Single-room solutions

Many efforts to down-size proton accelerators.

Many newly-installed systems are single-room solutions.

S2C2 superconducting synchrocyclotron (IBA) 2.5 m diameter.





Alonso and Antaya, Rev. Accel. Science Technol. 5 (2012) 227

C. Krantz Therapy Accelerators - Schmelzer Summer School - 27 July 2023

"Proteus ONE" single-room solution by IBA: 40 installations world-wide

## Single-room solutions





Alonso and Antaya, Rev. Accel. Science Technol. 5 (2012) 227

mevion.com

#### S250 system by Mevion

Gantry-mounted superconducting synchrocyclotron. Installed at 15 sites.

**2022:** Development of a fixed-beamline variant ("S250-Fit") that fits into existing linac-cave.

# Single-room solutions

#### Hitachi ProBeat V System

Compact p-synchrotron (250 MeV) with single-room solution





#### Umezava et al., Hitachi Rev. 64 (2015) 508



ca. 5 m

# Gantries



#### Hitachi ProBeat proton gantry

hitachi, Itd.





 Key element to provide all the DoF in application one is used to from photons ...

## Gantries

Heidelberg <sup>12</sup>C<sup>6+</sup> Gantry (HIT)

 $B\rho$  = 6.6 Tm

Overall weight 600 tons

In operation since 2012.





www.uniklinikum-heidelberg.de

## Gantries

# Superconducting <sup>12</sup>C<sup>6+</sup> gantry at HIMAC (2016)

# Now produced commercially by Toshiba.





Raster-scanning pencil beam.

Lighter and smaller than normal-conducting gantry for heavy ions ( $\sim$  300 t).

Iwata et al., NIM A 834 (2016)

# Industrial <sup>12</sup>C<sup>6+</sup> machines ...



#### Toshiba Heavy Ion (<sup>12</sup>C<sup>6+</sup>) Therapy System

Installed at multiple sites in Japan and South Korea.

global.toshiba









# Alternative accelerator concepts

Amaldi, Proc. of LINAC 2014

#### Linacs for proton therapy

Partly superconducting to obtain shorter machines.

Can vary energy in accelerator by (de-)activating individual cavities.



#### ↑ AVO LIGHT Linac-only proton accelerator. (London, UK)

First medical trials scheduled for 2023.



# Alternative accelerator concepts

#### Laser acceleration

Beam pulses of high intensity and broad energy distribution

- $\rightarrow$  Energy selecting beam line
- $\rightarrow$  No accelerator: compact
- $\rightarrow$  High power (~ 100 TW) Laser required

Proposed 230 MeV proton gantry for patient treatment using laser acceleration.



Set-up for irradiation of mice using 25 MeV laser-accelerated protons from Dresden DRACO system. Kroll et al., Nature Physics 18 (2022) 316



# Outline

Beam requirements



Cyclotron vs. synchrotron

Overview of some facilities

Recent developments and alternative concepts

#### Latest synchrotron R&D







# Synchrotron R&D

#### Cyclotron





- <u>cw-operation</u>: continuous train of short particle bunches.
- High intensity (high dose rates).
- <u>Ion intensity easily (and quickly) variable</u> (modulation of ion source current).

#### Cons

- <u>Fixed energy</u>: needs degraders (particle loss, radiation safety issues).
- <u>Heavy ions</u> (<sup>12</sup>C<sup>6+</sup>) would require very large magnet and chamber.

#### Synchrotron





- Scalable to arbitrary *Bρ*, can deliver <u>heavy ions</u>.
- <u>Variable energy</u>, (almost) no particle losses.

#### Cons

Trying to

fix these

- Control of <u>beam intensity</u> is difficult.
- <u>Pulsed operation</u>, breaks between cycles
- Very <u>high dose rates hard</u> to achieve.
  - $\rightarrow$  see advanced topics chapter!

C. Krantz Therapy Accelerators - Schmelzer Summer School - 27 July 2023



#### Remember: Slow extraction

Emitted beam is formed by slowly "feeding" particles to a betatron resonance.



#### Extracted SIS18 "spill"



There are two methods of slowly "feeding" the resonance:



# Change betatron tune of the low-amplitude particles. Examples: Slow quadrupole ramp → changes linear focussing.

Slow acceleration (using cavities, induction cores, stochastic noise)

- $\rightarrow$  changes particle momenta.
- → changes particle tunes via chromaticity.

There are two methods for slowly "feeding" the resonance:

# (2) Excite horizontal betatron motion of stable particles

Horizontal RF-kicker electrode ~ in sync with horizontal particle tune.



"Transverse RF-Knock-Out" (RF-KO) technique.



Albrecht, PhD, 1996

- → First implemented at HIMAC. A. Noda, NIM A 492 (2002) pp. 253
- $\rightarrow$  <u>Faster</u> and more direct control of destabilization rate.



RF-KO allows for fast (~ms) control of the average spill rate.





Krantz et al., Proc. of IPAC 2018

Major source of < 1 kHz spill ripple:

#### Instability of power converters

 $\rightarrow$  Tune ripple

iumf.ca

"Pulsing" of separatrix sep. - X



Figure 3: Transfer function for focusing quadrupoles (blue), extraction sextupoles (orange) and main bends (green).



C. Krantz Therapy Accelerators - Schmelzer Summer School - 27 July 2023

Solution 1: Active tune stabilisation

Experimental Air Core Quad system at MIT, Marburg.



# 



#### MIT: <sup>12</sup>C<sup>6+</sup> @ 167 MeV/u

#### Solution 2: Control of phase-space population

Use an elaborate RF-KO excitation spectrum to keep the "ripple region" of phase space free of particles.

A. Noda, NIM A 492 (2002) pp. 253







Recently realised at HIT, Heidelberg.





Cortés García, Feldmeier et al., NIM A 1022 (2022) Feldmeier et al., Proc. of IPAC 2022

# Synchrotron R&D: Multi-flattop extraction


## Synchrotron R&D: Multi-flattop extraction



Multiple extraction flats: Irradiate several energy slices in one cycle. Being implemented at HIT.





## Synchrotron R&D: Multi-flattop extraction

Experimental (?) support by

### Hitachi ProBeat system





Umezava et al., Hitachi Rev. 64 (2015) 508





## Synchrotrons and Flash irradiation

#### HIT, Heidelberg

# Experimental RF-KO extraction at FLASH dose rates > 40 Gy/s.

e.g.

M. Durante, W. Tinganelli, U. Weber, Physica Medica 94 (2022)

Weber, Scifoni, and Durante, Medical Physics. 49 (2022) 1974





Table 2: Intensities reached for FLASH conditions at HIT. Each number is the result of an optimisation for a particular experiment session. They do not show the technical limitation.

| Ion                          | particles per spill | spill duration | intensity         |
|------------------------------|---------------------|----------------|-------------------|
|                              |                     | (ms)           | (ions/s)          |
| Protons                      | $1\cdot 10^{10}$    | 200            | $5\cdot 10^{10}$  |
| $^{4}$ Helium $^{2+}$        | $3.5 \cdot 10^9$    | 90             | $3.9\cdot10^{10}$ |
| $^{12}$ Carbon <sup>6+</sup> | $4.2 \cdot 10^8$    | 200            | $2.1 \cdot 10^9$  |
| $^{16}$ Oxygen <sup>8+</sup> | $2 \cdot 10^8$      | 180            | $1.1 \cdot 10^9$  |

## Synchrotrons and Flash irradiation



## Take-home messages

Different accelerators serve different purposes.

Proton therapy accelerators and their R&D are almost fully industrialized by now.

Carbon therapy is still more closely tied to research facilities (Europe) ...

... but commercial <sup>12</sup>C<sup>6+</sup> solutions are getting more common (Japan).

Therapy accelerators *will* change as new technologies become available.