Slow Extraction Workshop 2017

Spill Control at the

Marburg Ion-Beam Therapy Centre

Claude Krantz

Marburg Ion-Beam Therapy Centre

10th November 2017

MIT: The Marburg Ion-Beam Therapy Centre

Radiation therapy with ion beams

p (up to 221 MeV)

 ${}^{12}C^{6+}$ (up to 430 MeV/u)

Bragg-peaking energy deposition profile can help in sparing healthy tissue.

MIT: The Marburg Ion-Beam Therapy Centre

move36-marburg.de

MIT: The Marburg Ion-Beam Therapy Centre

The MIT Accelerator

Prototype of SPHIC machine in Shanghai (in op. 2014).

Commissioned to clinical application by MIT + HIT in 2015

Similar to HIT accelerator and PIMMS-types (CNAO, MedAustron).

The MIT Accelerator

Linear accelerator

RFQ (400 keV/u) + IH structure (7 MeV/u) Tragi. 1,0 t

then stripping to p and C^{\rm 6+}

(Pantechnik Supernanogan)

 $\begin{array}{c} {\rm H_{3}}^{+} \colon 800 \; \mu {\rm A} \\ {\rm C}^{\rm 4+} \colon 180 \; \mu {\rm A} \end{array}$

The MIT Accelerator

Synchrotron (6.6 Tm, 65 m circ.)

Spill duration 1 - 8 s(transverse noise excitation)

I TTTIK T

High-energy beam transport

🛉 T 🔡 🗄 🛉

7

Beam outlets

3 horizontal, 1 45°-vertical.

TTTELE

All equipped with pencilbeam scanning dose delivery systems.

Online beam monitoring, active steering, and in-spill intensity modulation ("Dynamic Intensity Control").

 \rightarrow Characteristic time scale: few ms per irradiated spot.

밤님

8

Beam outlets

¹²C⁶⁺: $10^7 - 8 \cdot 10^8$

per spill (nominal: 8 s)

+ "Dynamic Intensity Control"

mit-marburg.de

Extraction system

"Dynamic Intensity Control" (DIC) – nearly identical to the equivalent system at HIT. (cf. C. Schömers, *Slow Extraction Workshop 2016*)

→ Automatically stabilises (average!) extraction rate at given set-point.

Spill quality

The **spill** we contributed to the "data collection" of the 2016 workshop:

 C^{6+} (298 MeV/u), with DIC, 50 μs binning

DIC stabilises average extraction rate on time scales down to ~ 10 ms ...

DIC stabilises average extraction rate on time scales down to ~ 10 ms ...

... but a spill "microstructure" on the kHz scale remains.

→ Average rate must be kept well below IC limit.

Note:

Intrinsic resolution of IC detectors blurs structures below $\sim 100 \ \mu s!$

Spill quality

Spill quality

Production setting uses extraction from bunched beam.

Adopted from previous GSI and HIT experiments:

- → Better kHz-scale microstructure.
 [Forck et al., Proc. of EPAC 2000]
- → Bucket oscillation couples to transverse tune and extraction rate (non-zero chromaticity).

Simulations (1): Spill macro- and microstructure

Ongoing project (in collaboration with HIT): Simulations of particle extraction.

Aim at better understanding of spill micro-structure and variation of beam properties during spill.

Simulations (1): Spill macro- and microstructure

Example: Effect of synchrotron motion:

Longitudinal coordinates of extracted particles relative to reference.

Due to chromaticity, particles in one half of the bucket are closer to resonance.

At MIT: $Q_{\rm h} \sim 1.7$, $\xi < 0 \rightarrow dp/p > 0$ is preferred.

Simulations (1): Spill macro- and microstructure

Example: Effect of synchrotron motion:

Longitudinal coordinates of extracted particles relative to reference.

Due to chromaticity, particles in one half of the bucket are closer to resonance.

At MIT: $Q_{\rm h} \sim 1.7$, $\xi < 0 \rightarrow dp/p > 0$ is preferred.

Large d*p*/*p* get extracted first. Does this affect observable beam properties (like envelope size and position)?

Marburger Ionenstrahl-Therapiezentrum

Work in progress!

19

DIC can vary the spill rate on the ~ 10 ms scale.

Allows for more *time-efficient irradiation* \rightarrow (while still on-line monitoring the dose delivery).

The Marburg system uses this feature heavily.

Irradiation plans may include jumps in the extraction rate by up 33 x (in both directions!).

Most challenging (accelerator set-up):

 $12 - 10^{7}$

9

6

↓ Actual treatment plan

50

KO exciter noise is generated by random phase-shift keying (PSK) of a sine signal.

- \rightarrow During accelerator set-up, 3 parameters "predefine" the noise kicker spectrum: A, f_{centre} , Δf .
- → Only A is controlled dynamically at run-time (via DIC)!

KO exciter noise is generated by random phase-shift keying (PSK) of a sine signal.

- \rightarrow During accelerator set-up, 3 parameters "predefine" the noise kicker spectrum: A, f_{centre} , Δf .
- → Only A is controlled dynamically at run-time (via DIC)!

Marburger Ionenstrahl-Therapiezentrum

Best ramp-down behaviour: (lots of trouble at first ...)

KO spectrum "detuned" so that f_{centre} lies in-between the particle tune and the extraction resonance.

C. Krantz Slow Extraction Workshop 2017 - CERN, 10 Nov. 2017

Simulations (2): Exciter frequency

KO centre freq. "detuned":

Particles in halo are rapidly extracted, beam core keeps its shape.
→ Expect good down-ramping behaviour of spill rate :-)

KO centre freq. = particle tune:

Beam core is excited, large unstable halo. → Spill goes on even when KO exciter is switched off. :-(

Simulations (2): Exciter frequency

Weak horizontal emittance growth.

Noise centre freq. "detuned"

Noise centre freq. = particle tune

Strong horizontal emittance growth.

C. Krantz Slow Extraction Workshop 2017 - CERN, 10 Nov. 2017

Outlook: Fast tune variations

Good previous experience at CNAO: **1 1** Cracciolo et al., Proc IPAC 2011 0.2 Signal on QIM [V] 0.15 ACQ feedback loop on 0.1 0.05 0 0.2 1.2 0 0.8 0.40.61 Time [s]

Thanks to M. Pullia for sharing technical information!!

Outlook: Fast tune variations

Designed for tune shifts

 $\delta Q_{\rm h} \sim 10^{-3} \dots 10^{-2}$

at rigidity of C / p therapy beams.

Due to spatial constraints vertical tune shift at MIT is almost as large as horizontal one:

MIT: $\beta_{\rm h}$ / $\beta_{\rm v}$ ~ 1.5

ACQ magnet will also be compatible with Heidelberg (HIT) synchrotron.

HIT: $\beta_h / \beta_v \sim 3$

Outlook: Fast tune variations

Magnet assembly now starting ...

... first experiments planned for 2018

- Quantify effects of tune ripple injection.
- Smoothing of spill by separatrix "blurring"?
- Interplay of ACQ and KO-excitation.
- Active feedback/-forward loops.
- ...

Current amplifier (HIFI, off-the-shelf) $\rightarrow I_{peak} > 10 \text{ A into } 4 \Omega \text{ up to } 40 \text{ kHz}$

U. Scheeler, C. K., B. Kröck, A. Weber, M. Witt, Th. Haberer R. Cee, F. Faber, E. Feldmeier,M. Galonska, S. Scheloske,C. Schömers, A. Peters,Th. Haberer

Thank You for your Attention.

