Upcoming Experiments at the Heidelberg Cryogenic Storage Ring

Claude Krantz

Max Planck Institute for Nuclear Physics

The Cryogenic Storage Ring

A look ahead: A Cryogenic Electron Cooler Storage Ring

The Cryogenic Storage Ring

Commissioning and First Experiments

A look ahead: A Cryogenic Electron Cooler Storage Ring

Gießen, 22th January 2015

Claude Krantz - Atomic Physics Seminar of the University of Gießen

Max-Planck-Institut Für Kernphysik

H₂CO C₂H₅OH CH₃OCH

CH-OH. c

CH

C_mH_n

HC11N

HC_oN

HC₇N

HC₄N

HC-N

products

ions

V

The Cryogenic Storage Ring

A look ahead: A Cryogenic Electron Cooler Storage Ring

The Cryogenic Storage Ring

Max-Planck-Institut Für Kernphysik

The Cryogenic Storage Ring

The CSR

Electrostatic beam optics

4-fold symmetric

4 identical "corner" lattice sectors

- 4 x 2 pairs of **focussing quadrupoles**
- 4 x 2 6°-deflector electrodes (20 kV)
- 4 x 2 39°-deflector electrodes (20 kV)

4 free straight sections (2.4 m each)

Cryogenics

Cryogenics

Inner vacuum chamber (≤ 10 K) cooled by superfluid He (20 W).

2 radiation shields (40 and 80 K) cooled by 5-K He (600 W)

Multi-Layer Insulation

Isolation vacuum chamber

XHV: Extremely High Vacuum

In 300-K-operation: $\sim 10^{-11}$ mbar

250°C bakeout, 5 ion-getter pumps, 16 active NEG pumps (~ 3 m²), 8 bakeable charcoal cryopumps

In 10-K-operation: $\approx 10^{-13}$ mbar RTE

cryoadsorption at 10-K-walls, 20 2-K cryocondensation pumps

Max-Planck-Institut Für Kernphysik

Beam diagnostics:

Position-, Schottky-, and ion currentpickup electrodes

ion

beam

Beam Imaging System

Claude Krantz - Atomic Physics Seminar of the University of Gießen

The CSR

Accelerators:

± 300 kV Main Injector

Planned ion source array:

- * Sputter ion source for negative molecular and cluster ions
- * ECR ion source (HCI)
- * E-spray ion source for organic molecular ions
- * Buffer-gas cooled rf-traps ...

Max-Planck-Institut Für Kernphysik

Accelerators:

- ± 300 kV Main Injector
- 40 kV Secondary Injector

The Cryogenic Storage Ring

Commissioning and **First Experiments**

A look ahead: A Cryogenic Electron Cooler Storage Ring

The CSR in March 2014

17th March 2014 (15:33): **First stored beam in CSR** ⁴⁰Ar⁺ (50 keV)

Max-Planck-Institut Für Kernphysik

The CSR, end of 2014

Next goal (March 2015): Cryogenic operation

Electrostatic ion optics

Characterise ring lattice

(betatron fuctions, tune, momentum compactation, etc.)

Extremely High Vacuum (10⁻¹³ mbar)

Storage of heavy (= slow) ions for very long times (~ 1000 s)

Cold molecular ions

10 K environment: Rovibrational cooling of molecules

Max-Planck-Institut Für Kernphysik

Claude Krantz - Atomic Physics Seminar of the University of Gießen

Gießen, 22th January 2015

 $OH^- + \gamma \rightarrow OH + e$

Detachment rate depends on rotational quantum number *J*

A molecular thermometer!

$CH^{\scriptscriptstyle +} + \gamma \longrightarrow C^{\scriptscriptstyle +} + H$

Rotational state spectroscopy (*J* population) Reverse process of CH⁺ formation in ISM

Max-Planck-Institut Für Kernphysik

The Cryogenic Storage Ring

A look ahead: A Cryogenic Electron Cooler Storage Ring

electron beam

Cryogenic electron/ion beam line (HT superconductor)

stored ion room temperature electron beamline (Cu coils)

beam

electron beam

MaX-Planck-Institut für Kernphysik

Electron energy: towards 1 eV and below ...

Calibration of E_{e} against cathode potential taking beam space charge and work function differences into account

few μ A at $E_{cool} = 1 \text{ eV}$ $n_e \sim 10^5 \text{ cm}^{-3}$

Current:

Cooling times $M_{ion} T_e^{3/2}$

$$\tau \sim \overline{Z_{ion}^2 n_e}$$

up to ~ 100 s but: ion lifetime ~ 1000 s

Electron energy: towards 1 eV and below ...

Transport region eV electrons Calibration of E_{e} against cathode potential taking beam space charge and work function differences into account 20 eV electrons 2D profile analyzer Expansion Collector region Current: Gun 180160^{+} few μA at $E_{cool} = 1 \text{ eV}$ $n_{\rm e} \sim 10^5 {\rm ~cm^{-3}}$ et al., in prep det. Cooling times ms width Y [mm] N. ... 10 s ms width X [mm] $E_{e} = 34 \text{ eV}$ $\tau \sim \frac{M_{ion} T_e^{3/2}}{Z_{ion}^2 n_e}$ **FSR** data, up to ~ 100 s ... storage time [s] storage time [s] ... but: ion lifetime ~ 1000 s

Interaction region

Drift tube

Assembly of cold chambers + superconducting magnets has started. Room-temperature beamlines + electron gun tested.

MaX-Planck-Institut für Kernphysik

Max-Planck-Institut Für Kernphysik

Polyatomics: H₃⁺, HD₂⁺, H₃O⁺, HNO⁺/HON⁺, CCN⁺/CNC⁺ ...

Dielectronic Recombination of atomic **monocations**: C⁺, N⁺, F⁺, Si⁺, P⁺, Cl⁺, Fe⁺ Contribute to cold astrochemistry [Bryans et al., ApJ 694 (2009)]

 $C^+({}^2P_{1/2}) + e^-(< 8 \text{ meV}) \rightarrow C^{**}({}^2P_{3/2}, nl) \rightarrow C^* + \gamma$ (Not measurable in TSR due to field ionisation and non-DR background!)

Electron cooled cluster anions (detachment, fragmentation ...)

Ion-neutral collisions with cooled/cold ions: $C + H_3^+ \rightarrow CH^+ + H_2$

Recombination of large **organic molecules** $C_x H_y^+$, $C_x H_y OH^+$... (Transition to **non-dissociative** recombination)

future Detector upgrade:A. Fleischmann, C. Enss et al.KIP, University of Heidelberg

"PIZZA" segmented microcalorimeter Fragment energy (= mass) sensitive

Deflector Neutrals Collisional breakup only CH,* @ 150 keV 160 CH. CH2+ breakup in residual gas collisions 140 36 mm 120 100 н CH, 80 CH 60 Η, 40 20 0 20 100 120 160 40 140 80 Detected energy [keV] [O. Novotny, in prep.] from experiment

The **Cryogenic Storage Ring** has passed all **basic functional tests** in room temperature operation.

The first beamtimes in **cryogenic operation** should start in March 2015.

After addition of an **electron cooler** in late 2015, CSR will be the world-leading facility for precision experiments on extremely heavy stored ions.

There is a rich experimental program ahead, on (at least) **molecular, atomic, and astrophysics**.

Max Planck Institute for Nuclear Physics, Heidelberg

Klaus Blaum Robert von Hahn Florian Fellenberger Sebastian George Svenja Lohmann Christian Meyer

Max-Planck-Institut Für Kernphysik

Holger Kreckel Florian Grussie Philipp Herwig Sebastian Menk Arno Becker C. K.

Aodh O'Connor Stephen Vogel **Robert Repnow** Manfred Grieser Andreas Wolf

Université Catholique,

Louvain-la-Neuve

Xavier Urbain

Justus-Liebig University, Gießen JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Kaija Spruck **Stefan Schippers**

Columbia University, **New York**

Oldřich Novotný Daniel W. Savin

Electrostatic beam optics

Thermally anchored to cold chamber walls ($\sim 10 \text{ K}$) ...

... but mechanically decoupled (thermal shrinking of beam pipe)

Electrostatic beam optics

Thermally anchored to cold chamber walls (~ 10 K) ...

... but mechanically decoupled (thermal shrinking of beam pipe)

Superconducting ring coils have been built and tested

(LNe, approx. 30 K)

10-K vacuum chambers are in manufacturing process ...

