The Cryogenic Storage Ring CSR: Stored and cooled ions in a 10 K environment

Claude Krantz

Max Planck Institute for Nuclear Physics

The Cryogenic Storage Ring **CSR**

Status of the CSR

Electron Cooler

(Some) experimental perspectives

The CSR

Claude Krantz - FLAIR Workshop

m/q range: $1 \dots \infty u/e$ lowest rigidity p^+, H^- @ 20 keV

35 m

20 keV × q ...

300 keV × q

10 ... 300 K

10⁻¹³ mbar (~ 1000 cm⁻³)

Max-Planck-Institut für Kernphysik

injection energy: 20 ... 300 keV

The CSR

Max-Planck-Institut Für Kernphysik

The CSR

Electrostatic beam optics

- 4-fold symmetric storage ring All CSR corner sections identical
- 4 x 2 pairs of **focussing quadrupoles**
- 4 x 2 6°-deflector electrodes (20 kV)
- 4 x 2 **39°-deflector** electrodes (20 kV)
- 4 free straight sections (2.4 m each)

The CSR

Electrostatic beam optics

- 4-fold symmetric storage ring All CSR corner sections identical
- 4 x 2 pairs of **focussing quadrupoles**
- 4 x 2 6°-deflector electrodes (20 kV)
- 4 x 2 39°-deflector electrodes (20 kV)
- 4 free straight sections (2.4 m each)

Cryogenics

- Multi-layer cryostat
- Inner vacuum chamber (≤ 10 K) cooled by superfluid He (20 W).
- 2 radiation shields (40 and 80 K) cooled by 5-K He (600 W)
- Superinsulation
- Isolation vacuum chamber

Cryogenics

- Multi-layer cryostat
- Inner vacuum chamber (≤ 10 K) cooled by superfluid He (20 W).
- 2 radiation shields (40 and 80 K) cooled by 5-K He (600 W)
- Superinsulation
- Isolation vacuum chamber

Max-Planck-Institut Für Kernphysik

Assembly of inner chambers and ion optics.

Assembly of inner chambers and ion optics.

Claude Krantz - FLAIR Workshop

Assembly of inner chambers and ion optics. High-temperature bake out (250°C) and cryogenic (10 K) test of 1st corner.

Max-Planck-Institut Für Kernphysik

Assembly of inner chambers and ion optics. ✓ High-temperature bake out (250°C) and cryogenic (10 K) test of 1st corner.✓ High-voltage (25 kV) test of optics.

Assembly of inner chambers and ion optics.

High-temperature bake out (250°C) and cryogenic (10 K) test of 1st corner.✓ High-voltage (25 kV) test of optics. ✓ 300 kV injector. ✓ Beam diagnostics

position-, Schottky-, currentpickups ion beam

beam

imaging

system

Assembly of **inner chambers and ion optics.**

High-temperature bake out (250°C) and cryogenic (10 K) test of 1st corner.✓ High-voltage (25 kV) test of optics. ✓ 300 kV injector. ✓ Beam diagnostics ✓ Commissioning (room temperature): Inject ⁴⁰Ar⁺ at 50 keV

Assembly of inner chambers and ion optics.

High-temperature bake out (250°C) and cryogenic (10 K) test of 1st corner.✓ High-voltage (25 kV) test of optics. ✓ 300 kV injector. ✓ Beam diagnostics ✓ Commissioning (room temperature): Inject ⁴⁰Ar⁺ at 50 keV ✓ 17th March 2014 (15:33) First stored beam!

Heidelberg, 16th May 2014

Assembly of inner chambers and ion optics.

High-temperature bake out (250°C) and cryogenic (10 K) test of 1st corner.✓ High-voltage (25 kV) test of optics. 300 kV injector. Beam diagnostics **Commissioning** (room temperature): **Inject** ⁴⁰Ar⁺ at 50 keV 17th March 2014 (15:33) First **stored** beam! **Beam lifetime** $(\sim 3 \text{ ms} @ \sim 10^{-7} \text{ mbar})$ Detector tests Betatron stability rf bunching

Next step:

Cryogenic operation

. . .

Electron Cooler

Max-Planck-Institut Für Kernphysik

Max-Planck-Institut für Kernphysik

Electron Cooler

Electron energy: towards 1 eV and below ...

- Calibration of E_e against cathode potential taking beam space charge and work function differences into account
 - Current: few μA at $E_{cool} = 1 \text{ eV}$
 - $n_{\rm e} \sim 10^5 {\rm ~cm^{-3}}$
 - Cooling times

$$\tau \sim \frac{M_{ion} T_e^{3/2}}{Z_{ion}^2 n_e}$$

100 -

Electron Cooler

Claude Krantz - FLAIR Workshop

Electron Cooler - Status

Superconducting ring coils have been built and tested

(LNe, approx. 30 K)

10-K vacuum chambers are in manufacturing process ...

"Neutral Imaging in NICE Cryogenic Environment" from experiment

Max-Planck-Institut für Kernphysik

Claude Krantz - FLAIR Workshop

Heidelberg, 16th May 2014

Claude Krantz - FLAIR Workshop

(A few) Experimental Perspectives

Electrostatic optics (300 keV/q)

Well-suited for low charge/mass-ratio

(e.g. complex molecules, clusters, low-charge atomic ions)

Extremely High Vacuum (10⁻¹³ mbar)

Storage of large or heavy (= slow) ions for long times (~ 1000 s)

Internally and kinematically cold ions

10 K environment: Internal cooling of molecules Electron cooler: phase space cooling

Max-Planck-Institut Für Kernphysik

(A few) Experimental Perspectives

Phase 1 (2014):

Commissioning of CSR (300 K) ✓

Storage at 10 K

→ Experiments with uncooled beam (but: radiative cooling!)

Phase 2 (2015 $\rightarrow \dots$):

Installation of electron cooler

- \rightarrow Experiments with cooled beams
- \rightarrow Experiments on electron-ion interaction (DR et al ...)

(internal AND external!)

Claude Krantz - FLAIR Workshop

Claude Krantz - FLAIR Workshop

DR Experiments: "Benchmarks"

DR Experiments: "Benchmarks"

Max-Planck-Institut Für Kernphysik

DR Experiments: Complex Systems

- Polyatomics: H_3^+ , H_3O^+ , HNO^+/HON^+ , CCN^+/CNC^+ ...
- Recombination of large organic molecules $C_x H_v^+$, $C_x H_v OH^+$...
- Dielectronic Recombination of atomic monoions: C⁺, N⁺, F⁺, Si⁺, P⁺, Cl⁺, Fe⁺ Contribute to cold astrochemistry [Bryans et al., ApJ 694 (2009)]

 $C^+({}^2P_{1/2}) + e^-(< 8 \text{ meV}) \rightarrow C^{**}({}^2P_{3/2}, nl) \rightarrow C^* + \gamma$ (Not measurable in TSR due to field ionisation and non-DR background!)

- Electron cooled cluster anions ...
- Ion-photon interactions / ion-neutral collisions with cooled/cold ions.

Max-Planck-Institut Für Kernphysik

CSR, a next-generation electrostatic storage ring has been been commissioned in 2013.

It will be all-cryogenic, providing very low residual gas density and IR background radiation.

It will feature a fully-functional electron cooler.

It provides unique opportunities for a multitude of experiments stored and cooled low energy ions.

Thank You!

Max Planck Institute for Nuclear Physics, Heidelberg

Klaus Blaum Robert von Hahn Florian Fellenberger Sebastian George Sebastian Menk

Holger Kreckel Florian Grussie Philipp Herwig Arno Becker C. K.

> UNIVERSITÄT GIESSEN

Aodh O'Connor Stephen Vogel **Robert Repnow** Manfred Grieser Andreas Wolf

Université Catholique,

Louvain-la-Neuve

Xavier Urbain

Justus-Liebig University, Gießen JUSTUS-LIEBIG-Kaija Spruck

Stefan Schippers

Columbia University, **New York**

Oldřich Novotný Daniel W. Savin

The CSR

Electrostatic beam optics

- Electrodes thermally anchored to cold chamber walls (≤ 10 K) ...
- ... but mechanically decoupled from them.

(thermal shrinking of beam pipe)

The CSR

Electrostatic beam optics

- Electrodes thermally anchored to cold chamber walls (≤ 10 K) ...
- ... but mechanically decoupled from them.

(thermal shrinking of beam pipe)

