The Cryogenic Storage Ring CSR and its Application to Molecular Recombination Physics

Claude Krantz

Max-Planck-Institute for Nuclear Physics

Heidelberg, Germany

Overview

The CSR Project

- Limits of present-day storage rings
- Electrostatic storage
- Low-temperature XHV
- DR @ CSR
 - Electron cooler
 - Detector concept
- **Experimental Perspectives**
 - DR with cold molecules
 - DR with heavy molecules

Overview

The CSR Project

- Limits of present-day storage rings
- Electrostatic storage
- Low-temperature XHV
- DR @ CSR

MaX-Planck-Institut Für Kernphysik

- Electron cooler
- Detector concept
- **Experimental Perspectives**
 - DR with cold molecules
 - DR with heavy molecules

Today: Electron cooler storage rings for DR studies

- Maximum beam rigidity: $r B_{\text{max}}$ for TSR: $\approx 1.4 \text{ Tm}$
- Maximum velocity of stored beam:

$$v_{max} = \frac{q}{M} r B_{max}$$

• There is a **practical** maximum *M* Ion loss rate by residual gas collisions exceeds electron cooling rate ...

Why electrostatic storage rings?

- Use static electric field to deflect ions: Deflecting force becomes velocity-independent. Momentum selective ↔ energy selective.
- Higher velocities for very large *M*: Longer storage times

$$q \mathrel{v} B \leftrightarrow q \mathrel{E}$$

$$v_{\rm max} \sim M^{-1}$$
 vs. $v_{\rm max} \sim M^{-1/2}$

• Economic

Power consumption!

• "Easy" to operate both at room and cryogenic temperature.

First electrostatic storage rings

- ELISA (Aarhus, 1998) Racetrack design, 25 keV/q, room temp.
- TMU Ring (Tokyo, 2004) ELISA design, 77 K (LN₂)

Max-Planck-Institut Für Kernphysik

- DESIREE (Stockholm, in constr.) ٩ Double ring (ion-ion interact.), < 20 K. 25 kV and 100 kV injectors
- CSR (Heidelberg, in constr.) < 10 K, 300 keV/q electron cooling (\rightarrow DR !)

beam

• CSR: a full-featured next generation storage ring

- Electrostatic beam optics
 - 4-fold symmetric storage ring All CSR corner sections identical
 - 4 x 2 pairs of focussing quadrupoles
 - 4 x 2 6°-deflector electrodes (30 kV)
 - 4 x 2 39°-deflector electrodes (30 kV)
 - 4 free straight sections (2.6 m each)

Claude Krantz - 8th Int'l. Conf. on Dissociative Recombination

Max-Planck-Institut Für Kernphysik

Tahoe City, 18th Aug. 2010

- Cryogenics
 - Multi-layer cryostat
 - Inner vacuum chamber (≤ 10 K) cooled by superfluid He (20 W).
 - 2 radiation shields (40 and 80 K) cooled by 5-K He return line (600 W)
 - Superinsulation
 - Isolation vacuum chamber

Electrostatic beam optics

- Electrodes thermally anchored to cold chamber walls (≤ 10 K) ...
- ... but mechanically decoupled from them.

(thermal shrinking of beam pipe!)

Claude Krantz - 8th Int'l. Conf. on Dissociative Recombination

Tahoe City, 18th Aug. 2010

10

XHV: Extremely High Vacuum

• In 300-K-operation: $\sim 10^{-11}$ mbar

200°C – 300°C bakeout, Ion-getter pumps, NEG surfaces, bakeable charcoal cryopumps

In < 10-K-operation: ~ 10⁻¹³ mbar RTE cryoadsorption at 10-K-walls, 2-K cryocondensation pumps

11

Present status

Max-Planck-Institut Für Kernphysik

- Prototype (CTF) test:
 Successful. ✓
- Isolation vacuum chamber: Complete. ✓
- Inner chambers Available for 1st corner section. ✓

Claude Krantz - 8th Int'l. Conf. on Dissociative Recombination

Present status

- Prototype (CTF) test:
 Successful. ✓
- Isolation vacuum chamber: Complete. ✓
- Inner chambers Available for 1st corner section. ✓
- Thermal radiation shields: Being manufactured ...
- Cooling lines: Being manufactured ...
- First corner section: To be complete by end of 2010

4

Overview

The CSR Project

- Limits of present-day storage rings
- Electrostatic storage
- Low-temperature XHV
- DR @ CSR
 - Electron cooler
 - Detector concept
- **Experimental Perspectives**
 - DR with cold molecules
 - DR with heavy molecules

Benefits

• Extremely High Vacuum:

Storage of large or heavy (= slow) molecules for long times.

Phase-space cooling with CSR electron cooler

Cold Environment:

State-selective experiments on IR-active species

Experimental challenges

• Electron cooler/target

Low ion velocities \rightarrow low cathode potential e.g. for M = 160 u @ 300 keV : $E_e \approx 1$ eV (!)

DR fragment detectors

Low-energetic particles difficult to detect

Wide fragmentation cones for light fragments / large KER

Extreme requirements on materials (10 ... 600 K, 10⁻¹³ mbar, ...)

17

Electron cooler

- Low energy electron beam: 0 ~ 1000 eV ... 1 eV
- "parallel beams" merging scheme less disturbance of stored CSR beam.
- Photocathode e-source ۲

vacuum compatibility

18

Low energy electron cooling

• Experience from TSR

CF⁺ (31 u, 2.6 MeV) : $E_e = 46 \text{ eV}$ DCND⁺ (30 u, 3.1 MeV): $E_e = 56 \text{ eV}$ NO⁺ (30 u, 2.0 MeV) : $E_e = 34 \text{ eV}$

- Cooling time:
 - $\tau \sim \frac{M T_e^{3/2}}{q^2 n_e}$

At low E_e : n_e limited by e-gun perveance!

• Beam temperature becomes the decisive factor!

Electron energy

• Calibration of E_{e} against cathode potential

taking beam space charge and work function differences into account

MaX-Planck-Institut Für Kernphysik

DR fragment detectors

• Detectors for charged fragments:

Placed after bending elements.

Open, secondary-electron converter for good efficiency at low energies.

frag.

 $\mathbf{AB^{+}} + \mathbf{e} \rightarrow \begin{cases} \mathbf{A^{+}} + \mathbf{B} + \mathbf{e} \\ \mathbf{A^{+}} + \mathbf{B^{-}} \end{cases}$

converter

Max-Planck-Institut Für Kernphysik

DR fragment detectors

• Detectors for neutral fragments:

Placed in chambers of 39° bending elements

MCP with delay-line anode readout \rightarrow Fragment imaging

Maximum opening cone $\pm 1^{\circ}$ limited by electrode geometry.

 $AB^+ + e \rightarrow A + B$

± 1°

Max-Planck-Institut Für Kernphysik

Tahoe City, 18th Aug. 2010

Overview

The CSR Project

- Limits of present-day storage rings
- Electrostatic storage
- Low-temperature XHV
- DR @ CSR
 - Electron cooler
 - Detector concept
- **Experimental Perspectives**
 - DR with cold molecules
 - DR with heavy molecules

State selective DR

- H_2^+ produced in rotational state-selective ion source: $v \in \{0, 1\}, J \in \{0, 1, 2\}$ ("LISE", X. Urbain et al.)
- Storage in TSR (300 K) possible due to missing dipole moment.
- IR active species (HD⁺) need cryogenic environment to reach and preserve lowest rovibrational states.

 $\mathbf{H}_{2}^{+}(v=0) + \mathbf{e} \rightarrow \mathbf{H}(1s) + \mathbf{H}(n=2)$ (2008)Scaled rate coefficient (cm³ s⁻¹eV^{1/2}) ×100 10-7 Novotny, PhD 10⁻⁸ 10⁻⁹ **J** = 1 10-1 10-3 10-2 10⁻¹ Electron energy (eV)

IR active species (e.g.)

۹ HeH^+ (v = 0) + e \rightarrow He (1s²) + H ($n \ge 2$)

Claude Krantz - 8th Int'l. Conf. on Dissociative Recombination

IR active species (e.g.)

Incident electron energy, eV

D. J. Haxton, C. H. Greene, Phys. Rev. A 79, 022701 (2009)

Claude Krantz - 8th Int'l. Conf. on Dissociative Recombination

Tahoe City, 18th Aug. 2010

Incident electron energy (eV)

Slow heavy ions

- ... difficult to study because of technical limits:
 - Slow ions
 - short storage times
 - no electron cooling
 - high residual gas collision rate i.e. high non-DR background, ...

• ... but CSR has:

- Extremely High Vacuum
- Long storage times
- Electron cooling
- Good recombination/collision signal ratio

- Slow heavy ions
 - Heavy noble gas dimers: Ar_2^+ , ...
 - Large organic molecules $C_x H_y$, ...
 - Fluorines CF_n^+

Industrially important CF+ heaviest ion studied at TSR

• Cluster ions ...

Dependence of rate coefficients on cluster temperature ...

- CSR, a next-generation storage ring is in construction.
- The first corner of the ring will be finished by end 2010.
- Its low-energy electron cooler makes the CSR the first electrostatic ring suitable for precision DR studies.
- Extremely high vacuum, cryogenic environment and ability to store large-mass ions provide unique new experimental opportunities for DR.

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Thank you!

Klaus Blaum Florian Fellenberger Michael Froese Manfred Grieser Robert von Hahn Michael Lange Felix Laux Sebastian Menk Roland Repnow Andrey Shornikov Andreas Wolf C. K.

Thank you!

