Heavy Molecular Ions in Electron Cooler Storage Rings

Claude Krantz

Max Planck Institute for Nuclear Physics

Claude Krantz - COOL'13 Workshop

e-Cooler: Low energy electron-ion collider

e-Cooler: Low energy electron-ion collider

Claude Krantz - COOL'13 Workshop

Recombination of molecular ions

Electrons and molecular ions: **Dissociative Recombination (DR)**

 $AB^+ + e + E_{coll} \rightarrow A^{(*)} + B^{(*)} + E_{KER}$

max-Planck-Institut Für Kernphysik

DR of molecular ions

reaction "rate coefficient"

 $\alpha = \langle \sigma(v)v \rangle$

 $AB^+ + e + E_{coll} \rightarrow A^{(*)} + B^{(*)} + E_{KER}$

DR of molecular ions

reaction "rate coefficient"

 $\alpha = \langle \sigma(v)v \rangle$

$$AB^+ + e + E_{coll} \rightarrow A^{(*)} + B^{(*)} + E_{KER}$$

DR of molecular ions

Electron cooling molecular ions

• Maximum rigidity: $r B_{max}$ for TSR: ≈ 1.4 Tm

• Maximum velocity:

$$v_{ion} = \frac{Z_{ion}}{M_{ion}} r B_{max} \rightarrow U \sim \frac{Z_{ion}^2}{M_{ion}^2}$$

e.g. CHD⁺ (15 u) : $v_{ion} \sim 0.030 \text{ c}$, $U \sim 230 \text{ V}$ $D_3 \text{O}^+$ (22 u) : $v_{ion} \sim 0.020 \text{ c}$, $U \sim 110 \text{ V}$ DCND⁺ (30 u) : $v_{ion} \sim 0.015 \text{ c}$, $U \sim 55 \text{ V}$ HCl⁺ (36 u) : $v_{ion} \sim 0.012 \text{ c}$, $U \sim 40 \text{ V}$ $D_2 \text{Cl}^+$ (41 u) : $v_{ion} \sim 0.010 \text{ c}$, $U \sim 31 \text{ V}$

• Both storage and electron cooling of molecular ions are difficult!

... short storage times (res. gas losses)

... long e-cooling times

Cooling time

Max-Planck-Institut Für Kernphysik

 $\tau \sim \frac{M_{ion} T_e^{3/2}}{Z_{ion}^2 n_e}$

Storage time [ms to s]

Claude Krantz - COOL'13 Workshop

Mürren, 14 June 2013

Cooling time

MaX-Planck-Institut für Kernphysik

Claude Krantz - COOL'13 Workshop

Mürren, 14 June 2013

Cooling time

Max-Planck-Institut für Kernphysik

High beam rigidity (low v_{ion}): \rightarrow low electron energy (~Ue) \rightarrow low $n_e (I_{max} \sim U^{3/2})$

For molecular ions: $M_{\rm ion} \gg 10 \,\mathrm{u}$ $Z_{\rm ion} = 1$

Electron temperature

Thermionic cathodes:

$$J \sim T^2 \exp\left(\frac{-\Phi}{k_B T}\right)$$

established technology high *J* are possible ...

high electron-T($k_{\rm B}T > 100 \text{ meV}$)

Electron temperature

Photocathodes:

• Electrons overcome Φ by absorbtion of photons ($hv > \Phi$)

 Semiconductor Negative Electron Affinity (NEA) photocathodes: e's can thermalise to states close to vacuum energy.

 $T_{\rm e} \sim T_{\rm cath}$ ($k_{\rm B}T \approx 10 \dots 24 \text{ meV}$)

Max-Planck-Institut Für Kernphysik

GaAs photo cathodes

Ti/Cr ~

10 mm

Photo cathode electron cooler

Photo cathode electron cooler

Claude Krantz - COOL'13 Workshop

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Ions	$M_{\rm ion}$	$E_{\rm e}({\rm cool.})$	$B\rho_{\rm TSR}$ (Tm)
 H ₃ ⁺	3 u	735 eV	0.49
HD_2^+	5 u	327 eV	0.55
CHD ⁺	15 u	231 eV	1.37
HF^{+}	20 u	112 eV	1.28
DF^+	21 u	115 eV	1.31
D_3O^+	22 u	112 eV	1.36
DCND ⁺	30 u	56 eV	1.36
DCO^+	30 u	56 eV	1.36
N_2D^+	30 u	56 eV	1.36
CF^+	31 u	46 eV	1.27
HS^+	33 u	45 eV	1.33
$^{18}O^{16}O^{+}$	34 u	43 eV	1.34
$\mathrm{H}^{35}\mathrm{Cl}^+$	36 u	40 eV	1.32
$D_{2}^{37}Cl^{+}$	41 u	31 eV	1.31

Max-Planck-Institut Für Kernphysik

Ions	$M_{\rm ion}$	$E_{\rm e}({\rm cool.})$	$B\rho_{\rm TSR}$ (Tm)	$I_{\rm e} ({\rm mA})$	$n_{\rm e}$ (cm ⁻³)	$\tau_{cool}(s)$	"t _{cold} " (s)	$\boldsymbol{\epsilon}_{_{fi}}\left(\boldsymbol{\mu}\boldsymbol{m}\right)$
 H,+	3 u	735 eV	0.49					
HD_2^+	5 u	327 eV	0.55			X		
CHD ⁺	15 u	231 eV	1.37					
HF^{+}	20 u	112 eV	1.28	0.3	$2.1 \cdot 10^{6}$	1.4(1)	3	≤ 0.008
DF^+	21 u	115 eV	1.31	0.3	$2.1 \cdot 10^{6}$	0.7(2)	3	\leq 0.012
D_3O^+	22 u	112 eV	1.36					
DCND ⁺	30 u	56 eV	1.36			10		
DCO^+	30 u	56 eV	1.36	0.3	$3.0.10^{6}$		4	
N_2D^+	30 u	56 eV	1.36	0.2	2.0.106		8	
CF^+	31 u	46 eV	1.27	0.27	$3.0.10^{6}$	1.2(2)	4	≤0.016
HS^+	33 u	45 eV	1.33	0.24	$2.7 \cdot 10^{6}$	1.4(3)	10	\leq 0.023
$^{18}O^{16}O^{+}$	34 u	43 eV	1.34	0.22	$2.5 \cdot 10^{6}$	1.8(3)	8	\leq 0.032
$\mathrm{H}^{35}\mathrm{Cl}^+$	36 u	40 eV	1.32	0.22	$2.6 \cdot 10^{6}$		12	
$D_{2}^{37}Cl^{+}$	41 u	31 eV	1.31	0.2	$2.7 \cdot 10^{6}$		10	

Ions	$M_{_{ m ion}}$	E_{e} We at	re able to coo l	even the	, (cm ⁻³)	$\tau_{cool}^{}(s)$	"t _{cold} " (s)	$\epsilon_{\rm fi} (\mu m)$
$\overline{\mathrm{H}_{3}^{+}}$	3 u	73 heavi	$\frac{100}{10} = \frac{10}{5} = \frac{10}{5$	molecular ions				
HD_2^+	5 u	32	0.00					
CHD^+	15 u	231 eV	1.37					
HF^{+}	20 u	112 eV	1.28	0.3	$2.1 \cdot 10^{6}$	1.4(1)	3	≤ 0.008
DF^+	21 u	115 eV	1.31	0.3	$2.1 \cdot 10^{6}$	0.7(2)	3	\le 0.012
$D_{3}O^{+}$	22 u	112 eV	1.36			PC.		
DCND ⁺	30 u	56 eV	1.36			14		
DCO^+	30 u	56 eV	1.36	0.3	$3.0.10^{6}$		4	
N_2D^+	30 u	56 eV	1.36	0.2	$2.0.10^{6}$		8	
CF ⁺	31 u	46 eV	1.27	0.27	$3.0.10^{6}$	1.2(2)	4	≤ 0.016
HS^+	33 u	45 eV	1.33	0.24	$2.7 \cdot 10^{6}$	1.4(3)	10	≤ 0.023
$^{18}O^{16}O^{+}$	34 u	43 eV	1.34	0.22	$2.5 \cdot 10^{6}$	1.8(3)	8	≤ 0.032
$\mathrm{H}^{35}\mathrm{Cl}^+$	36 u	40 eV	1.32	0.22	$2.6 \cdot 10^{6}$		12	
$D_{2}^{37}Cl^{+}$	41 u	31 eV	1.31	0.2	$2.7 \cdot 10^{6}$		10	

Preliminary!

Ions	$M_{_{ m ion}}$	$E_{\rm e}({\rm cc}$	Cooling rates agree	ee with	$n_{\rm e} ({\rm cm}^{-3})$	$\tau_{cool}^{}\left(s ight)$	"t _{cold} " (s)	$\epsilon_{_{\rm fi}}\left(\mu m\right)$
$\overline{\mathrm{H}_{3}^{+}}$	3 u	735 e	$I_e = 10 \dots 20 \text{ K}$ (lots of uncertainti	es)				
HD_2^+	5 u	327 e 🗸	0.33					
CHD^+	15 u	231 eV	1.37					
HF^{+}	20 u	112 eV	1.28	0.3	$2.1 \cdot 10^{6}$	1.4(1)	3	≤ 0.008
DF^+	21 u	115 eV	1.31	0.3	$2.1 \cdot 10^{6}$	0.7(2)	3	\leq 0.012
D_3O^+	22 u	112 eV	1.36					
DCND ⁺	30 u	56 eV	1.36			100		
DCO^+	30 u	56 eV	1.36	0.3	3.0.106		4	
N_2D^+	30 u	56 eV	1.36	0.2	2.0.106		8	
CF^+	31 u	46 eV	1.27	0.27	3.0·10 ⁶	1.2(2)	4	≤ 0.016
HS^+	33 u	45 eV	1.33	0.24	$2.7 \cdot 10^{6}$	1.4(3)	10	\leq 0.023
$^{18}O^{16}O^{+}$	34 u	43 eV	1.34	0.22	$2.5 \cdot 10^{6}$	1.8(3)	8	\leq 0.032
$\mathrm{H}^{35}\mathrm{Cl}^+$	36 u	40 eV	1.32	0.22	$2.6 \cdot 10^{6}$		12	
$D_{2}^{37}Cl^{+}$	41 u	31 eV	1.31	0.2	$2.7 \cdot 10^{6}$		10	

Preliminary!

Max-Planck-Institut Für Kernphysik

Ions	$M_{ m ion}$	$E_{e}(c$	Transverse momo spread correspond	e ntum ls to	A) $n_{\rm e} ({\rm cm}^{-3})$	$\tau_{cool}(s)$	"t _{cold} " (s)	$\epsilon_{\rm fi} (\mu m)$
 H ₃ ⁺	3 u	735	~ 40 70 K					
HD_{2}^{+}	5 u	327	(roughly what one					
CHD^+	15 u	231	expects from IBS					
HF^{+}	20 u	112	modeling at given	τ)	$2.1 \cdot 10^{6}$	1.4(1)	3	≤ 0.008
DF^+	21 u	115		cool	$2.1 \cdot 10^{6}$	0.7(2)	3	\leq 0.012
D_3O^+	22 u	112 e	eV 1.36					
DCND ⁺	30 u	56 6	eV 1.36			A CONTRACT		
DCO^+	30 u	56 e	eV 1.36	0.3	3.0·10 ⁶		4	
N_2D^+	30 u	56 6	eV 1.36	0.2	2.0.106		8	
CF^+	31 u	46 6	eV 1.27	0.2	7 $3.0.10^6$	1.2(2)	4	≤ 0.016
HS^+	33 u	45 6	eV 1.33	0.2	4 $2.7 \cdot 10^6$	1.4(3)	10	≤ 0.023
$^{18}O^{16}O^{+}$	34 u	43 6	eV 1.34	0.2	2 $2.5 \cdot 10^6$	1.8(3)	8	≤ 0.032
$\mathrm{H}^{35}\mathrm{Cl}^+$	36 u	40 e	eV 1.32	0.2	2 $2.6 \cdot 10^6$		12	
$D_{2}^{37}Cl^{+}$	41 u	31 6	eV 1.31	0.2	$2.7 \cdot 10^{6}$		10	

Preliminary!

How to reach even higher mass?

Solution 1: Use a bigger storage ring

CSRe ("Cooler Storage Ring", IMP) 9.4 Tm

Molecular ions research facility, Lanzhou, China.

 $\rightarrow M_{\rm ion}/Z_{\rm ion} \sim 200$

Solution 2: Store (much!) longer

CSR ("Cryogenic Storage Ring", MPIK)

beam line at ~ 10 K $\rightarrow 10^{-13}$ mbar $\rightarrow 100 \times \text{longer ion lifetimes}$

 $M_{ion}/Z_{ion} \ge 160$ (with e-cooling!) Added value: IR-radiation-free!

How to reach even higher mass?

Solution 1: Use a bigger storage ring

CSRe ("Cooler Storage Ring", IMP) 9.4 Tm

Molecular ions research facility, Lanzhou, China.

 $\rightarrow M_{\rm ion}/Z_{\rm ion} \sim 200$

Solution 2: Store (much!) longer

CSR ("Cryogenic Storage Ring", MPIK)

beam line at ~ 10 K

- $\rightarrow 10^{-13}$ mbar
- \rightarrow 100 × longer ion lifetimes

 $M_{ion}/Z_{ion} \ge 160$ (with e-cooling!) Added value: IR-radiation-free!

CSR Electron Cooler

Max-Planck-Institut Für Kernphysik

CSR Electron Cooler

Slow molecular ion beams are fun but challenging.

e-cooling of them requires cold, slow electron beams. GaAs photo-cathodes are ideal sources.

The photocathode e-cooler at TSR has cooled molecular ions up to mass 41 to emittances of $\sim 0.01 \ \mu m$ in a few seconds.

A low energy (1 eV) e-cooler based on the same emitter is being build for the electrostatic Cryogenic Storage Ring.

Thank you!

Max-Planck-Institut für Kernphysik,

Heidelberg

Andrey Shornikov Arno Becker Stephen Vogel Manfred Grieser Andreas Wolf C. K.

Institute of Semiconductor Physics, Novosibirsk

> Aleksandr Terekhov Aleksandr Jaroshevich

Columbia Astrophysics Lab, New York

Oldřich Novotný Daniel W. Savin

Justus-Liebig Universität,

Gießen

JUSTUS-LIEBIG-

Kaija Spruck

Stefan Schippers

GaAs photo cathodes

Negative Electron Affinity:

• To reach the vacuum level, we still need to overcome the **electron affinity**.

GaAs photo cathodes

- Negative Electron Affinity:
 - electron-phonon scattering broadens the electron energy distribution ...
 - ... but in practice, only a narrow part of the energy distribution is extracted. $\rightarrow T_e \approx T_{GaAs}$

Photo-cathode electron cooler

A fully-featured next generation storage ring

The CSR electron cooler

Interaction region

Drift tube

Collector

Shornikov, t.b.p.

2

Electron energy: towards 1 eV an below ...

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK